Ex:

Use Kirchhoff's laws to find the value of i_{1} and v_{2}.

Sol' $\mathrm{N}: \quad$ A voltage loop on the left side yields the value of v_{2} :

$$
24 \mathrm{~V}-v_{2}=0 \mathrm{~V} \Rightarrow \mathrm{v}_{2}=24 \mathrm{~V}
$$

Note that this loop proceeded in a clockwise direction, starting from the lower left. The sign of each voltage drop is determined by the + or voltage symbol seen as the path exits a component.

A current sum at the top center node yields the value of i_{1} :

$$
i_{1}+8 \mathrm{~A}-9 \mathrm{~A}=0 \mathrm{~V} \Rightarrow i_{1}=1 \mathrm{~A}
$$

Note that this is the sum of the currents flowing away from the top center node.

Note also that a current sum for the bottom center node yields the same value for i_{1}. This follows because the three currents are actually the same three currents flowing away from the top center node (but of the opposite sign).

