

Ex:

Use Kirchhoff's laws to find the value of i_1 and v_2 .

SOL'N: A voltage loop on the left side yields the value of v_2 :

24 V – $v_2 = 0$ V \Rightarrow v₂ = 24 V

Note that this loop proceeded in a clockwise direction, starting from the lower left. The sign of each voltage drop is determined by the + or - voltage symbol seen as the path exits a component.

A current sum at the top center node yields the value of i_1 :

 $i_1 + 8 \text{ A} - 9 \text{ A} = 0 \text{ V} \Longrightarrow i_1 = 1 \text{ A}$

Note that this is the sum of the currents flowing away from the top center node.

Note also that a current sum for the bottom center node yields the same value for i_1 . This follows because the three currents are actually the same three currents flowing away from the top center node (but of the opposite sign).