Ex:

Find the value of total resistance between terminals \mathbf{a} and \mathbf{b}.

SoL'n: The 36Ω and 45Ω resistors are in parallel, as are the 24Ω and 48Ω resistors:

$$
\begin{aligned}
& 36 \Omega\|45 \Omega=9 \Omega \cdot 4\| 5=9 \Omega \cdot \frac{4 \cdot 5}{4+5}=9 \Omega \cdot \frac{20}{9}=20 \Omega \\
& 24 \Omega\|48 \Omega=24 \Omega \cdot 1\| 2=24 \Omega \cdot \frac{1 \cdot 2}{1+2}=24 \Omega \cdot \frac{2}{3}=16 \Omega
\end{aligned}
$$

We replace the 36Ω and 45Ω resistors with a single 20Ω resistor, and we replace the 24Ω and 48Ω resistors with a single 16Ω resistor. This leaves two resistors in series, whose values sum:

$$
R_{\mathbf{a b}}=20 \Omega+16 \Omega=36 \Omega
$$

