Ex:

a) Calculate i_{1}, i_{2}, and v_{0}.
b) Find the power dissipated for every component, including the voltage source.

Sol'n: a) We first label voltage and current for each resistor.

starting with voltage loops, we have the following equations:

$$
v \text {-loop on left: }+12 \mathrm{~V}-v_{1}=0 \mathrm{~V} \text { or } v_{1}=12 \mathrm{~V}
$$

This means that a resistor across a voltage source has that voltage drop across it.

$$
v \text {-loop on right: }+v_{1}-v_{3}-v_{0}-v_{2}=O V
$$

This loop is in the clockwise direction.

Since we have eq'ns for the two inner loops, the outside v-loop would be redundant.

Now we consider i-sums at nodes.

At the top center node, we discover that we lack a current for the $R 2$ source. If we define a current for the voltage source, we add another unknown and another eq'n. Consequently, this gets us no closer to solving for the currents and voltages. Thus, we avoid writing a current-sum eg'n for the top center node.

The same argument applies to the bottom center node. Thus, this problem requires no current-sum eg'ns.

The next step is to equate currents in series components. Here, the same current must flow in $1 \Omega, 3 \Omega$, and 2Ω resistors:

$$
i_{3}=i_{0}=i_{2}
$$

From this point forward, we use i_{2} in place of i_{3} and i_{0}. Note= if we look for such series currents at the outset, then we may eliminate some currents immediately.

Last, we use $0 \mathrm{hm}^{\prime}$'s law.

$$
\begin{aligned}
& v_{1}=i_{1} \cdot 12 \Omega \quad \text { or } \quad 12 \mathrm{~V}=i_{1} \cdot 12 \Omega \Rightarrow i_{1}=\frac{12 \mathrm{~V}}{12 \Omega}=1 \mathrm{~A} \\
& v_{0}=i_{2} \cdot 3 \Omega \\
& v_{2}=i_{2} \cdot 2 \Omega \\
& v_{3}=i_{2} \cdot 1 \Omega
\end{aligned}
$$

Note that we can solve for v_{1} and i_{1} separately. This will happen whenever we have different parts of the circuit that are connected in parallel directly across a v-source.

For right side of the circuit, we can substitute the Ohm's law expressions into the voltage eg'n and solve for i_{2} :

$$
v_{1}-v_{3}-v_{0}-v_{2}=O V
$$

or $12 \mathrm{~V}-i_{2} \cdot 1 \Omega-i_{2} \cdot 3 \Omega-i_{2} \cdot 2 \Omega=0 \mathrm{~V}$
or $i_{2}(1 \Omega+3 \Omega+2 \Omega)=12 V$
or $\quad i_{2}=\frac{12 V}{1 \Omega+3 \Omega+2 \Omega}=\frac{12 V}{6 \Omega}=2 A$

$$
i_{2}=2 A
$$

For v_{0}, we use Ohm's law:

$$
v_{0}=i_{2} \cdot 3 \Omega=2 A \cdot 3 \Omega=6 \mathrm{~V}
$$

b) power $=i \cdot v$

For resistors, $p=i v=i^{2} R=\frac{v^{2}}{R}$.

$$
\begin{aligned}
& p_{12 \Omega}=i_{1}^{2} \cdot 12 \Omega=(1 A)^{2} \cdot 12 \Omega=12 \mathrm{~W} \\
& p_{1 \Omega}=i_{2}^{2} \cdot 1 \Omega=(2 A)^{2} \cdot 1 \Omega=4 \mathrm{~W} \\
& p_{3 \Omega}=i_{2}^{2} \cdot 3 \Omega=(2 A)^{2} \cdot 3 \Omega=12 \mathrm{~W} \\
& p_{2 \Omega}=i_{2}^{2} \cdot 2 \Omega=(2 A)^{2} \cdot 2 \Omega=8 \mathrm{~W}
\end{aligned}
$$

Total R per $=36 \mathrm{~W}$

For the 12 V source, we need the current. Now that we have solved the circuit, we can use Kirchhoff's laws to find the current. Using a current source for the top center node, we have the following eg'n:

$$
\begin{gathered}
i_{12 V}+i_{1}+i_{2}=0 A \\
\overbrace{i 2}=i_{12}=-\left(i_{i}+i_{2}\right)=-(1 A+2 A)=-3 A
\end{gathered}
$$

So $P_{t 2 V}=-3 A \cdot 12 V=-36 W$
Total power for circuit is $-36 w+36 w=0 w$.
Note: a negative power means a source is supplying power.

