Ex:

Find v_{x}, i_{1}, and the power dissipated by the dependent source.
sol'n: We find i_{1}, the current for the dependent v-sro after we solve the circuit.

First, label i's and $v^{\prime} s$ for $R^{\prime} s$:

Second, write v-loop egns for loops not containg current sri's. There is only one such loop, indicated by the dotted line:

$$
+v_{x}+2 v_{x}-v_{2}-v_{3}=0 v
$$

Third, write current-sum eqn's for nodes (unless nodes are connected only by v srcis). We don't use the nodes on top since they are connected by only the $2 v_{x}$ source.

For the node on the bottom, left of center, we have

$$
\begin{equation*}
+20 \mathrm{~mA}-i_{x}-i_{3}=O A \tag{1}
\end{equation*}
$$

For the node on the bottom, right of center, we have

$$
\begin{equation*}
i_{3}+20 m A-i_{2}=O A \tag{2}
\end{equation*}
$$

Fourth, we look components in series carrying the same current. Here, we lack any such components.

Fifth, we write Ohm's Law eq'ns for all the R's:

$$
\begin{aligned}
& v_{x}=i_{x} \cdot 10 \mathrm{k} \Omega \\
& v_{2}=i_{2} \cdot 5 \mathrm{k} \Omega \\
& v_{3}=i_{3} \cdot 15 \mathrm{k} \Omega
\end{aligned}
$$

Now substitute Ohm's Law for V 's in v-loop eq'n:

$$
\begin{equation*}
i_{x} \cdot 10 k \Omega+2 i_{x} \cdot 10 k \Omega-i_{2} \cdot 5 k \Omega-i_{3} \cdot 15 k \Omega=0 \mathrm{~V} \tag{3}
\end{equation*}
$$

Solve one the three egins (1-3) for a current:

$$
i_{3}=i_{2}-20 \mathrm{~mA}
$$

Substitute this in eq'ns (1) and (2):

$$
\begin{aligned}
& 20 \mathrm{~mA}-i_{x}-\left(i_{2}-20 \mathrm{~mA}\right)=O A \\
& i_{x}(10 \mathrm{k} \Omega+20 \mathrm{k} \Omega)-i_{2}(5 \mathrm{k} \Omega)-\left(i_{2}-20 \mathrm{~mA}\right) 15 \mathrm{k} \Omega=0 \mathrm{~V}
\end{aligned}
$$

Solving the first of these eq'ns for i_{2} gives

$$
i_{2}=40 \mathrm{~mA}-i_{x}
$$

Using this in the second of the two eq'ns gives:

$$
i_{x}(30 \mathrm{k} \Omega)-\left(40 \mathrm{~mA}-i_{x}\right)(5 \mathrm{k} \Omega+15 \mathrm{k} \Omega)=-20 \mathrm{~mA} \cdot 15 \mathrm{k} \Omega
$$

or $i \times(30 \mathrm{k} \Omega+20 \mathrm{k} \Omega)=40 \mathrm{~mA}(20 \mathrm{k} \Omega)-20 \mathrm{~mA} \cdot 15 \mathrm{k} \Omega$
or $i \times(50 \mathrm{k} \Omega)=500 \mathrm{~V}$
or $i_{x}=\frac{500 \mathrm{~V}}{50 \mathrm{k} \Omega}=10 \mathrm{~mA}$

Now we can find i_{1} from a current sum at the node on top to the left of center:

$$
-20 m A+i_{x}-i_{1}=0 m A
$$

or $i_{1}=-20 \mathrm{~mA}+i_{x}=-20 \mathrm{~mA}+10 \mathrm{~mA}=-10 \mathrm{~mA}$
The power dissipated by the dependent source is

$$
p=i_{1} \cdot 2 v_{x}=-10 \mathrm{~mA} \cdot 2 \cdot \overbrace{10 \mathrm{~m} A \cdot 10 \not \mathrm{k}} \Omega
$$

or $p=-2 W$

