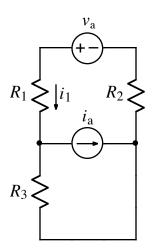
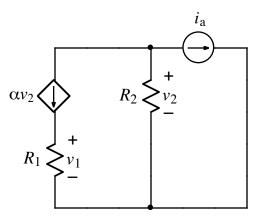


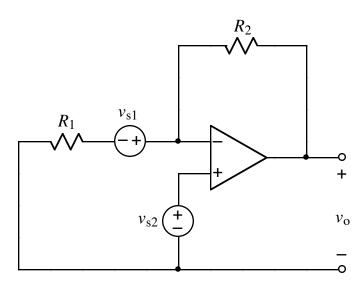
1.


2.


Calculate i_1 .

Calculate v_1 .

3.



Derive an expression for i_1 . The expression must not contain more than the circuit parameters v_a , i_a , R_1 , R_2 , and R_3 .

- a) Derive an expression for v_1 . The expression must not contain more than the circuit parameters α , i_a , R_1 , and R_2 . **Note:** $\alpha > 0$.
- b) Make at least one consistency check (other than a units check) on your expression. In other words, choose component values that make it possible to solve the circuit by inspection, and verify that your answer to (a) gives that answer when you plug in those component values. Specify your consistency check by listing a numerical value for every source and resistor.

5.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_0 in terms of not more than v_{s1} , v_{s2} , R_1 , and R_2 .