

Ex:

Using Ohm's law and the node voltages, find the currents for all the resistors in the above circuit.

SOL'N: The node voltages are found by starting at the reference and stepping from node to node via voltage sources:

 $v_1 = -2 V$ $v_2 = 6 V$ $v_3 = 4 V$ $v_4 = -10 V$ $v_5 = -16 V$

Currents may be measured in one of two directions for each resistor. Here, they will all be measured with the arrow pointing down or to the right.

The resistor currents are found by taking the difference of the node voltage on each end of the resistor and dividing by the resistance. Note that nodes connected by wires are really the same node and have the same voltage.

 R_1 is between nodes v_2 and v_4 :

$$i_1 = \frac{v_2 - v_4}{R_1} = \frac{6 \text{ V} - -10 \text{ V}}{2 \text{ k}\Omega} = 8 \text{ mA}$$

 R_2 is also between nodes v_2 and v_4 :

$$i_2 = \frac{v_2 - v_4}{R_2} = \frac{6 \text{ V} - 10 \text{ V}}{1 \text{ k}\Omega} = 16 \text{ mA}$$

 R_3 is between nodes v_1 and v_3 :

$$i_1 = \frac{v_1 - v_3}{R_3} = \frac{-2 \text{ V} - 4 \text{ V}}{3 \text{ k}\Omega} = -2 \text{ mA}$$

 R_4 is between nodes v_3 and reference (i.e., 0 V):

$$i_4 = \frac{v_3 - 0 \text{ V}}{R_4} = \frac{4 \text{ V} - 0 \text{ V}}{10 \text{ k}\Omega} = 0.4 \text{ mA}$$

 R_5 is between nodes v_3 and v_4 :

$$i_5 = \frac{v_3 - v_4}{R_5} = \frac{4 \text{ V} - -10 \text{ V}}{1.5 \text{ k}\Omega} = \frac{28}{3} \text{ mA} \approx -9.33 \text{ mA}$$

 R_6 is between nodes v_4 and v_5 :

$$i_6 = \frac{v_4 - v_5}{R_6} = \frac{-10 \text{ V} - 16 \text{ V}}{12 \text{ k}\Omega} \approx -0.5 \text{ mA}$$