Ex:

a) Use the node-voltage method to find v_{1}.
b) Find the equivalent resistance for the 30Ω and 20Ω resistors in parallel. Then use the voltage divider formula to find v_{1}. Verify that both (a) and (b) have the same answer.

SoL'N: a) We set the sum of currents out of v_{1} equal to zero:

$$
\frac{v_{1}-24 \mathrm{~V}}{12 \Omega}+\frac{v_{1}-0 \mathrm{~V}}{30 \Omega}+\frac{v_{1}-0 \mathrm{~V}}{20 \Omega}=0 \mathrm{~V}
$$

or, if we group terms multiplying v_{1} and put constants on the right,

$$
v_{1}\left(\frac{1}{12 \Omega}+\frac{1}{30 \Omega}+\frac{1}{20 \Omega}\right)=\frac{24 \mathrm{~V}}{12 \Omega}=2 \mathrm{~A}
$$

or, multiply by the common denominator,

$$
60 \Omega \cdot v_{1}\left(\frac{1}{12 \Omega}+\frac{1}{30 \Omega}+\frac{1}{20 \Omega}\right)=60 \Omega \cdot 2 \mathrm{~A}
$$

or

$$
v_{1}(5+2+3)=120 \mathrm{~V}
$$

or

$$
v_{1}=\frac{120 \mathrm{~V}}{10}=12 \mathrm{~V}
$$

b) First, we calculate the parallel resistance of the 20Ω and 30Ω :

$$
20 \Omega\|30 \Omega=10 \Omega \cdot 2\| 3=10 \Omega \frac{2(3)}{2+3}=10 \Omega \frac{6}{5}=12 \Omega
$$

The voltage divider formula gives the following result that agrees with the previous answer:

$$
v_{1}=24 \mathrm{~V} \frac{12 \Omega}{12 \Omega+12 \Omega}=12 \mathrm{~V}
$$

NoTE: For the voltage divider, the 12Ω on top is from $20 \Omega \| 30 \Omega$.

