Ex:

Use the node-voltage method to find v_{1} and v_{2}.

Sol'n: We have only a voltage source between the nodes labeled v_{1} and v_{2}. Thus, we have a supernode. We draw a bubble around these two nodes, (with the 120 V source inside), and we set the sum of currents flowing out of the bubble equal to zero:

$$
-15 \mathrm{~mA}+\frac{v_{1}}{8 \mathrm{k} \Omega}+\frac{v_{2}}{12 \mathrm{k} \Omega}+45 \mathrm{~mA}=0 \mathrm{~A}
$$

We obtain a second equation for the supernode from the voltage relationship between the nodes.

$$
v_{1}-v_{2}=120 \mathrm{~V}
$$

Note: The node next to the plus sign of the 120 V source, ν_{1}, is added in this equation and the node next to the minus sign of the 120 V source, v_{2}, is subtracted in this equation.

We solve these two equations in two unknowns. Here, we eliminate v_{2} first.

$$
v_{2}=v_{1}-120 \mathrm{~V}
$$

Substituting into the first equation gives one equation with one unknown.

$$
-15 \mathrm{~mA}+\frac{v_{1}}{8 \mathrm{k} \Omega}+\frac{v_{1}-120 \mathrm{~V}}{12 \mathrm{k} \Omega}+45 \mathrm{~mA}=0 \mathrm{~A}
$$

We collect terms multiplying v_{1} and put constant terms on the right side.

$$
v_{1}\left(\frac{1}{8 \mathrm{k} \Omega}+\frac{1}{12 \mathrm{k} \Omega}\right)=15 \mathrm{~mA}-45 \mathrm{~mA}+\frac{120 \mathrm{~V}}{12 \mathrm{k} \Omega}
$$

or

$$
v_{1}\left(\frac{1}{8 \mathrm{k} \Omega}+\frac{1}{12 \mathrm{k} \Omega}\right)=-20 \mathrm{~mA}
$$

or

$$
24 \mathrm{k} \Omega \cdot v_{1}\left(\frac{1}{8 \mathrm{k} \Omega}+\frac{1}{12 \mathrm{k} \Omega}\right)=-20 \mathrm{~mA} \cdot 24 \mathrm{k} \Omega
$$

or

$$
v_{1}(3+2)=-480 \mathrm{~V}
$$

or

$$
v_{1}=\frac{-480 \mathrm{~V}}{5}=-96 \mathrm{~V}
$$

Using the second of the original equations, we find v_{2}.

$$
v_{2}=v_{1}-120 \mathrm{~V}=-96 \mathrm{~V}-120 \mathrm{~V}=-216 \mathrm{~V}
$$

