Ex:

Use the node-voltage method to find $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3}.

Sol'n: Since we have a dependent source, we start by defining the dependent current in terms of the node voltages.

$$
i_{x}=\frac{31 \mathrm{~V}-v_{3}}{110 \mathrm{k} \Omega}
$$

We have a supernode for nodes v_{1} and v_{2}. We first sum all the currents out of a bubble drawn around nodes v_{1} and v_{2} with the dependent voltage source inside:

$$
\begin{equation*}
100 \mu \mathrm{~A}+\frac{v_{1}-v_{3}}{50 \mathrm{k} \Omega}+\frac{v_{2}}{30 \mathrm{k} \Omega}+40 \mu \mathrm{~A}=0 \mathrm{~A} \tag{1}
\end{equation*}
$$

We also write a voltage equation for the supernode:

$$
\begin{equation*}
v_{1}-v_{2}=50 \mathrm{k} \Omega \cdot i_{x}=\frac{31 \mathrm{~V}-v_{3}}{110 \mathrm{k} \Omega} \tag{2}
\end{equation*}
$$

For the v_{3} node we have a conventional current sum:

$$
\begin{equation*}
\frac{v_{3}-v_{1}}{50 \mathrm{k} \Omega}-40 \mu \mathrm{~A}+\frac{v_{3}-31 \mathrm{~V}}{55 \mathrm{k} \Omega}=0 \mathrm{~A} \tag{3}
\end{equation*}
$$

We clean up the first equation:

$$
v_{1} \frac{1}{50 \mathrm{k} \Omega}+v_{2} \frac{1}{30 \mathrm{k} \Omega}-v_{3} \frac{1}{50 \mathrm{k} \Omega}=-140 \mu \mathrm{~A}
$$

or, after multiplying by the common denominator, $150 \mathrm{k} \Omega$:

$$
\begin{equation*}
3 v_{1}+5 v_{2}-3 v_{3}=-21 \mathrm{~V} \tag{1'}
\end{equation*}
$$

And we clean up the third equation:

$$
-v_{1} \frac{1}{50 \mathrm{k} \Omega}+v_{3} \frac{1}{50 \mathrm{k} \Omega}+\frac{1}{55 \mathrm{k} \Omega}=40 \mu \mathrm{~A}+\frac{31 \mathrm{~V}}{55 \mathrm{k} \Omega}
$$

or, after multiplying by the common denominator, $550 \mathrm{k} \Omega$:

$$
\begin{equation*}
-11 v_{1}+21 v_{3}=22+310 \mathrm{~V}=332 \mathrm{~V} \tag{3'}
\end{equation*}
$$

The simplest equation is Eqn (2), which we may solve for v_{2} :

$$
v_{2}=v_{1}-50 \mathrm{k} \Omega \frac{31 \mathrm{~V}-v_{3}}{110 \mathrm{k} \Omega}=v_{1}+\frac{5}{11} v_{3}-\frac{155}{11} \mathrm{~V}
$$

Substituting this into Eqns (1^{\prime}) yields the following:

$$
3 v_{1}+5\left(v_{1}+\frac{5}{11} v_{3}-\frac{155}{11} \mathrm{~V}\right)-3 v_{3}=-21 \mathrm{~V}
$$

or, after multiplying by 11 :

$$
88 v_{1}-8 v_{3}=-21(11) \mathrm{V}+775 \mathrm{~V}=544 \mathrm{~V}
$$

or, after dividing by 8 :

$$
\begin{equation*}
11 v_{1}-v_{3}=68 \mathrm{~V} \tag{1"}
\end{equation*}
$$

Since v_{2} is absent from Eqn (3^{\prime}), we proceed to solve ($1^{\prime \prime}$) and (3^{\prime}) for v_{3}. (We solve for v_{3} because v_{1} is easier to eliminate.) We use (1") $+\left(3^{\prime}\right)$:

$$
\begin{array}{r}
-11 v_{1}+21 v_{3}=332 \mathrm{~V} \\
+11 v_{1}-v_{3}=68 \mathrm{~V} \\
\hline=\quad 20 v_{3}=400 \mathrm{~V}
\end{array}
$$

or

$$
v_{3}=20 \mathrm{~V}
$$

Using (1") we find the value of v_{1} from v_{3} :

$$
11 v_{1}=68 \mathrm{~V}+\mathrm{v}_{3}=68 \mathrm{~V}+20 \mathrm{~V}=88 \mathrm{~V}
$$

or

$$
v_{1}=8 \mathrm{~V}
$$

Finally, we use (1^{\prime}) to find v_{2} :

$$
5 v_{2}=-21 \mathrm{~V}-3 v_{1}+3 v_{3}=-21 \mathrm{~V}-3(8 \mathrm{~V})+3(20 \mathrm{~V})=15 \mathrm{~V}
$$

or

$$
v_{2}=\frac{15 \mathrm{~V}}{5}=3 \mathrm{~V}
$$

An alternative approach is to find a symbolic solution. We start by labeling the components in the circuit, as shown below:

Using conductance, (i.e., $1 /$ resistance), we have the following symbolic equations:

$$
\begin{aligned}
& i_{s 1}+\left(v_{1}-v_{3}\right) g_{2}+v_{2} g_{1}+i_{s 2}=0 \mathrm{~A} \\
& v_{1}-v_{2}=\alpha\left(v_{s 1}-v_{3}\right) g_{3} \\
& \left(v_{3}-v_{1}\right) g_{2}-i_{s 2}+\left(v_{3}-v_{s 1}\right) 2 g_{3}=0 \mathrm{~A}
\end{aligned}
$$

In matrix form, we have the following equation:

$$
\left[\begin{array}{ccc}
g_{2} & g_{1} & -g_{2} \\
1 & -1 & \alpha g_{3} \\
-g_{2} & 0 & g_{2}+2 g_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-\left(i_{s 1}+i_{s 2}\right) \\
\alpha v_{s 1} g_{3} \\
i_{s 2}+2 v_{s 1} g_{3}
\end{array}\right]
$$

If we multiply the second row by g_{2}, we have a convenient form for eliminating ν_{1} :

$$
\left[\begin{array}{ccc}
g_{2} & g_{1} & -g_{2} \\
g_{2} & -g_{2} & \alpha g_{2} g_{3} \\
-g_{2} & 0 & g_{2}+2 g_{3}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-\left(i_{s 1}+i_{s 2}\right) \\
\alpha g_{2} g_{3} v_{s 1} \\
i_{s 2}+2 v_{s 1} g_{3}
\end{array}\right]
$$

We add the first and third rows, and we add the second and third rows to eliminate v_{1}. The result is a smaller matrix equation:

$$
\left[\begin{array}{cc}
g_{1} & 2 g_{3} \\
-g_{2} & \alpha g_{2} g_{3}+g_{2}+2 g_{3}
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-i_{s 1}+2 v_{s 1} g_{3} \\
\alpha g_{2} g_{3} v_{s 1}+i_{s 2}+2 v_{s 1} g_{3}
\end{array}\right]
$$

Now can multiply the first row by g_{2} and the second row by g_{1} to obtain terms in the first column that will cancel out when the rows are summed:

$$
\left[\begin{array}{cc}
g_{1} g_{2} & 2 g_{2} g_{3} \\
-g_{1} g_{2} & {\left[\alpha g_{2} g_{3}+g_{2}+2 g_{3}\right] g_{1}}
\end{array}\right]\left[\begin{array}{c}
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
{\left[-i_{s 1}+2 v_{s 1} g_{3}\right] g_{2}} \\
{\left[\alpha g_{2} g_{3} v_{s 1}+i_{s 2}+2 v_{s 1} g_{3}\right] g_{1}}
\end{array}\right]
$$

Summing the first two rows yields an equation for v_{3} :

$$
\begin{aligned}
\left\{\left[\alpha g_{2} g_{3}+g_{2}+2 g_{3}\right] g_{1}+2 g_{2} g_{3}\right\} v_{3}= & {\left[\alpha g_{2} g_{3} v_{s 1}+i_{s 2}+2 v_{s 1} g_{3}\right] g_{1} } \\
& +\left[-i_{s 1}+2 v_{s 1} g_{3}\right] g_{2}
\end{aligned}
$$

or

$$
v_{3}=\frac{\left[\alpha g_{2} g_{3} v_{s 1}+i_{s 2}+2 v_{s 1} g_{3}\right] g_{1}+\left[-i_{s 1}+2 v_{s 1} g_{3}\right] g_{2}}{\left\{\left[\alpha g_{2} g_{3}+g_{2}+2 g_{3}\right] g_{1}+2 g_{2} g_{3}\right\}}
$$

This result looks daunting, but we can rearrange things somewhat:

$$
v_{3}=\frac{v_{s 1}\left[\left(\alpha g_{2}+2\right) g_{1} g_{3}+2 g_{2} g_{3}\right]-i_{s 1} g_{2}+i_{s 2} g_{1}}{\left(\alpha g_{2}+2\right) g_{1} g_{3}+g_{1} g_{2}+2 g_{2} g_{3}}
$$

Multiplying the top and bottom by $R_{1} R_{2} R_{3}$ simplifies the form somewhat:

$$
v_{3}=\frac{v_{s 1}\left[\left(\alpha g_{2}+2\right) R_{2}+2 R_{1}\right]-i_{s 1} R_{1} R_{3}+i_{s 2} R_{2} R_{3}}{\left(\alpha g_{2}+2\right) R_{2}+R_{3}+2 R_{1}}
$$

Now we calculate the various terms:

$$
\begin{aligned}
& \alpha g_{2}+2=50 \mathrm{k} \Omega \cdot \frac{1}{50 \mathrm{k} \Omega}+2=1+2=3 \\
& i_{s 1} R_{1} R_{3}=100 \mu \mathrm{~A} \cdot 30 \mathrm{k} \Omega \cdot 110 \mathrm{k} \Omega=3 \mathrm{~V} \cdot 110 \mathrm{k} \Omega \\
& i_{s 2} R_{2} R_{3}=40 \mu \mathrm{~A} \cdot 50 \mathrm{k} \Omega \cdot 110 \mathrm{k} \Omega=2 \mathrm{~V} \cdot 110 \mathrm{k} \Omega
\end{aligned}
$$

Substituting for all terms, we obtain a value for v_{3} :

$$
v_{3}=\frac{31 \mathrm{~V}[3 \cdot 50 \mathrm{k} \Omega+2 \cdot 30 \mathrm{k} \Omega]-3 \mathrm{~V} \cdot 110 \mathrm{k} \Omega+2 \mathrm{~V} \cdot 110 \mathrm{k} \Omega}{3 \cdot 50 \mathrm{k} \Omega+110 \mathrm{k} \Omega+2 \cdot 30 \mathrm{k} \Omega}
$$

or

$$
v_{3}=\frac{31 \mathrm{~V}[210 \mathrm{k} \Omega]-1 \mathrm{~V} \cdot 110 \mathrm{k} \Omega}{320 \mathrm{k} \Omega}=\frac{31 \mathrm{~V}[21]-1 \mathrm{~V} \cdot 11}{32}
$$

or

$$
v_{3}=\frac{640 \mathrm{~V}}{32}=20 \mathrm{~V}
$$

From the top row of the first 2×2 matrix equation, above, we obtain an equation relating v_{2} and v_{3} :

$$
\begin{aligned}
& g_{1} v_{2}+2 g_{3} v_{3}=-i_{s 1}+2 v_{s 1} g_{3} \\
& {\left[\begin{array}{cc}
g_{1} & 2 g_{3} \\
-g_{2} & \alpha g_{2} g_{3}+g_{2}+2 g_{3}
\end{array}\right]\left[\begin{array}{l}
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{c}
-i_{s 1}+2 v_{s 1} g_{3} \\
\alpha g_{2} g_{3} v_{s 1}+i_{s 2}+2 v_{s 1} g_{3}
\end{array}\right]}
\end{aligned}
$$

or

$$
v_{2}=\frac{-i_{s 1}+2 v_{s 1} g_{3}-2 g_{3} v_{3}}{g_{1}}
$$

Multiplying top and bottom by $R_{1} R_{3}$, we have the following result:

$$
v_{2}=\frac{-i_{s 1} R_{1} R_{3}+2 v_{s 1} R_{1}-2 R_{1} v_{3}}{R_{3}}
$$

or

$$
v_{2}=\frac{-100 \mu \mathrm{~A} \cdot 30 \mathrm{k} \Omega \cdot 110 \mathrm{k} \Omega+2 \cdot 31 \mathrm{~V} \cdot 30 \mathrm{k} \Omega-2 \cdot 30 \mathrm{k} \Omega \cdot 20 \mathrm{~V}}{110 \mathrm{k} \Omega}
$$

or

$$
v_{2}=\frac{-3 \mathrm{~V} \cdot 110 \mathrm{k} \Omega+62 \mathrm{~V} \cdot 30 \mathrm{k} \Omega-40 \mathrm{~V} \cdot 30 \mathrm{k} \Omega}{110 \mathrm{k} \Omega}
$$

or

$$
v_{2}=\frac{-3 \mathrm{~V} \cdot 11+62 \mathrm{~V} \cdot 3-40 \mathrm{~V} \cdot 3}{11}=\frac{3 \mathrm{~V} \cdot 11}{11}=3 \mathrm{~V}
$$

Finally, we return to our original equation for the supernode voltage relationship to find v_{1} :

$$
v_{1}-v_{2}=\alpha\left(v_{s 1}-v_{3}\right) g_{3}
$$

or

$$
v_{1}=50 \mathrm{k} \Omega(31 \mathrm{~V}-20 \mathrm{~V}) / 110 \mathrm{k} \Omega+3 \mathrm{~V}=8 \mathrm{~V}
$$

To verify the above answers, we perform a consistency check. Using the node voltages, we calculate the currents flowing in the circuit and check to see if they sum to zero at each node.

We find i_{x} using v_{3} and the 31 V source.

$$
i_{x}=\frac{31 \mathrm{~V}-20 \mathrm{~V}}{110 \mathrm{k} \Omega}=\frac{11 \mathrm{~V}}{110 \mathrm{k} \Omega}=100 \mu \mathrm{~A}
$$

We find the other currents by using Ohm's law. The diagram below shows that the currents at every node sum to zero. It follows that our solution is correct.

