

Ex:

Use the node-voltage method to find v_1 , v_2 , and v_3 .

SOL'N: Since we have a dependent source, we start by defining the dependent current in terms of the node voltages.

$$i_x = \frac{31 \mathrm{V} - v_3}{110 \mathrm{k}\Omega}$$

We have a supernode for nodes v_1 and v_2 . We first sum all the currents out of a bubble drawn around nodes v_1 and v_2 with the dependent voltage source inside:

$$100 \ \mu A + \frac{v_1 - v_3}{50 \ k\Omega} + \frac{v_2}{30 \ k\Omega} + 40 \ \mu A = 0 \ A \tag{1}$$

We also write a voltage equation for the supernode:

$$v_1 - v_2 = 50 \text{ k}\Omega \cdot i_x = \frac{31 \text{ V} - v_3}{110 \text{ k}\Omega}$$
(2)

For the v_3 node we have a conventional current sum:

$$\frac{v_3 - v_1}{50 \,\mathrm{k}\Omega} - 40 \,\,\mathrm{\mu}\mathrm{A} + \frac{v_3 - 31 \,\mathrm{V}}{55 \,\mathrm{k}\Omega} = 0 \,\,\mathrm{A} \tag{3}$$

We clean up the first equation:

$$v_1 \frac{1}{50 \text{ k}\Omega} + v_2 \frac{1}{30 \text{ k}\Omega} - v_3 \frac{1}{50 \text{ k}\Omega} = -140 \text{ }\mu\text{A}$$

or, after multiplying by the common denominator, $150 \text{ k}\Omega$:

$$3v_1 + 5v_2 - 3v_3 = -21 \text{ V} \tag{1'}$$

And we clean up the third equation:

$$-v_1 \frac{1}{50 \text{ k}\Omega} + v_3 \frac{1}{50 \text{ k}\Omega} + \frac{1}{55 \text{ k}\Omega} = 40 \text{ }\mu\text{A} + \frac{31 \text{ V}}{55 \text{ k}\Omega}$$

or, after multiplying by the common denominator, 550 k Ω :

$$-11v_1 + 21v_3 = 22 + 310 \text{ V} = 332 \text{ V}$$
(3')

The simplest equation is Eqn (2), which we may solve for v_2 :

$$v_2 = v_1 - 50 \text{ k}\Omega \frac{31 \text{ V} - v_3}{110 \text{ k}\Omega} = v_1 + \frac{5}{11}v_3 - \frac{155}{11} \text{ V}$$

Substituting this into Eqns (1') yields the following:

$$3v_1 + 5\left(v_1 + \frac{5}{11}v_3 - \frac{155}{11}V\right) - 3v_3 = -21V$$

or, after multiplying by 11:

$$88v_1 - 8v_3 = -21(11) \text{ V} + 775 \text{ V} = 544 \text{ V}$$

or, after dividing by 8:

$$11v_1 - v_3 = 68 \text{ V} \tag{1"}$$

Since v_2 is absent from Eqn (3'), we proceed to solve (1") and (3') for v_3 . (We solve for v_3 because v_1 is easier to eliminate.) We use (1") + (3'):

$$-11v_1 + 21v_3 = 332 \text{ V}$$

+ 11v_1 - v_3 = 68 V
= 20v_3 = 400 V

 $v_3 = 20 \text{ V}$

Using (1") we find the value of v_1 from v_3 :

 $11v_1 = 68 \text{ V} + v_3 = 68 \text{ V} + 20 \text{ V} = 88 \text{ V}$

or

 $v_1 = 8 V$

Finally, we use (1') to find v_2 :

$$5v_2 = -21 \text{ V} - 3v_1 + 3v_3 = -21 \text{ V} - 3(8 \text{ V}) + 3(20 \text{ V}) = 15 \text{ V}$$

or

$$v_2 = \frac{15 \text{ V}}{5} = 3 \text{ V}$$

An alternative approach is to find a symbolic solution. We start by labeling the components in the circuit, as shown below:

Using conductance, (i.e., 1/resistance), we have the following symbolic equations:

$$i_{s1} + (v_1 - v_3)g_2 + v_2g_1 + i_{s2} = 0 \text{ A}$$

$$v_1 - v_2 = \alpha(v_{s1} - v_3)g_3$$

$$(v_3 - v_1)g_2 - i_{s2} + (v_3 - v_{s1})2g_3 = 0 \text{ A}$$

In matrix form, we have the following equation:

82	g_1	$-g_2$	v_1		$-(i_{s1}+i_{s2})$
1	-1	αg_3	v_2	=	$\alpha v_{s1}g_3$
$-g_2$	0	$g_2 + 2g_3$	v ₃		$i_{s2} + 2v_{s1}g_3$

If we multiply the second row by g_2 , we have a convenient form for eliminating v_1 :

$$\begin{bmatrix} g_2 & g_1 & -g_2 \\ g_2 & -g_2 & \alpha g_2 g_3 \\ -g_2 & 0 & g_2 + 2g_3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -(i_{s1} + i_{s2}) \\ \alpha g_2 g_3 v_{s1} \\ i_{s2} + 2v_{s1} g_3 \end{bmatrix}$$

We add the first and third rows, and we add the second and third rows to eliminate v_1 . The result is a smaller matrix equation:

$$\begin{bmatrix} g_1 & 2g_3 \\ -g_2 & \alpha g_2 g_3 + g_2 + 2g_3 \end{bmatrix} \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -i_{s1} + 2v_{s1}g_3 \\ \alpha g_2 g_3 v_{s1} + i_{s2} + 2v_{s1}g_3 \end{bmatrix}$$

Now can multiply the first row by g_2 and the second row by g_1 to obtain terms in the first column that will cancel out when the rows are summed:

$$\begin{bmatrix} g_1g_2 & 2g_2g_3 \\ -g_1g_2 & [\alpha g_2g_3 + g_2 + 2g_3]g_1 \end{bmatrix} \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} [-i_{s1} + 2v_{s1}g_3]g_2 \\ [\alpha g_2g_3v_{s1} + i_{s2} + 2v_{s1}g_3]g_1 \end{bmatrix}$$

Summing the first two rows yields an equation for v_3 :

$$\{ [\alpha g_2 g_3 + g_2 + 2g_3]g_1 + 2g_2 g_3 \} v_3 = [\alpha g_2 g_3 v_{s1} + i_{s2} + 2v_{s1} g_3]g_1 + [-i_{s1} + 2v_{s1} g_3]g_2 \}$$

or

$$v_{3} = \frac{[\alpha g_{2}g_{3}v_{s1} + i_{s2} + 2v_{s1}g_{3}]g_{1} + [-i_{s1} + 2v_{s1}g_{3}]g_{2}}{\{[\alpha g_{2}g_{3} + g_{2} + 2g_{3}]g_{1} + 2g_{2}g_{3}\}}$$

This result looks daunting, but we can rearrange things somewhat:

$$v_3 = \frac{v_{s1}[(\alpha g_2 + 2)g_1g_3 + 2g_2g_3] - i_{s1}g_2 + i_{s2}g_1}{(\alpha g_2 + 2)g_1g_3 + g_1g_2 + 2g_2g_3}$$

Multiplying the top and bottom by $R_1R_2R_3$ simplifies the form somewhat:

$$v_3 = \frac{v_{s1}[(\alpha g_2 + 2)R_2 + 2R_1] - i_{s1}R_1R_3 + i_{s2}R_2R_3}{(\alpha g_2 + 2)R_2 + R_3 + 2R_1}$$

Now we calculate the various terms:

$$\begin{aligned} \alpha g_2 + 2 &= 50 \text{ k}\Omega \cdot \frac{1}{50 \text{ k}\Omega} + 2 = 1 + 2 = 3 \\ i_{s1}R_1R_3 &= 100 \text{ }\mu\text{A} \cdot 30 \text{ }\text{k}\Omega \cdot 110 \text{ }\text{k}\Omega = 3 \text{ V} \cdot 110 \text{ }\text{k}\Omega \\ i_{s2}R_2R_3 &= 40 \text{ }\mu\text{A} \cdot 50 \text{ }\text{k}\Omega \cdot 110 \text{ }\text{k}\Omega = 2 \text{ V} \cdot 110 \text{ }\text{k}\Omega \end{aligned}$$

Substituting for all terms, we obtain a value for v_3 :

$$v_{3} = \frac{31 \text{ V}[3 \cdot 50 \text{ k}\Omega + 2 \cdot 30 \text{ k}\Omega] - 3 \text{ V} \cdot 110 \text{ k}\Omega + 2 \text{ V} \cdot 110 \text{ k}\Omega}{3 \cdot 50 \text{ k}\Omega + 110 \text{ k}\Omega + 2 \cdot 30 \text{ k}\Omega}$$

or

$$v_3 = \frac{31 \text{ V}[210 \text{ k}\Omega] - 1 \text{ V} \cdot 110 \text{ k}\Omega}{320 \text{ k}\Omega} = \frac{31 \text{ V}[21] - 1 \text{ V} \cdot 11}{32}$$

or

$$v_3 = \frac{640 \text{ V}}{32} = 20 \text{ V}$$

From the top row of the first 2 x 2 matrix equation, above, we obtain an equation relating v_2 and v_3 :

$$g_1 v_2 + 2g_3 v_3 = -i_{s1} + 2v_{s1}g_3$$

$$\begin{bmatrix} g_1 & 2g_3 \\ -g_2 & \alpha g_2 g_3 + g_2 + 2g_3 \end{bmatrix} \begin{bmatrix} v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} -i_{s1} + 2v_{s1}g_3 \\ \alpha g_2 g_3 v_{s1} + i_{s2} + 2v_{s1}g_3 \end{bmatrix}$$

or

$$v_2 = \frac{-i_{s1} + 2v_{s1}g_3 - 2g_3v_3}{g_1}$$

Multiplying top and bottom by R_1R_3 , we have the following result:

$$v_2 = \frac{-i_{s1}R_1R_3 + 2v_{s1}R_1 - 2R_1v_3}{R_3}$$

or

$$v_2 = \frac{-100 \ \mu\text{A} \cdot 30 \ \text{k}\Omega \cdot 110 \ \text{k}\Omega + 2 \cdot 31 \ \text{V} \cdot 30 \ \text{k}\Omega - 2 \cdot 30 \ \text{k}\Omega \cdot 20 \ \text{V}}{110 \ \text{k}\Omega}$$

or

$$v_2 = \frac{-3 \text{ V} \cdot 110 \text{ k}\Omega + 62 \text{ V} \cdot 30 \text{ k}\Omega - 40 \text{ V} \cdot 30 \text{ k}\Omega}{110 \text{ k}\Omega}$$

or

$$v_2 = \frac{-3 \text{ V} \cdot 11 + 62 \text{ V} \cdot 3 - 40 \text{ V} \cdot 3}{11} = \frac{3 \text{ V} \cdot 11}{11} = 3 \text{ V}$$

Finally, we return to our original equation for the supernode voltage relationship to find v_1 :

$$v_1 - v_2 = \alpha (v_{s1} - v_3)g_3$$

or

 $v_1 = 50 \text{ k}\Omega(31 \text{ V} - 20 \text{ V})/110 \text{ k}\Omega + 3 \text{ V} = 8 \text{ V}$

To verify the above answers, we perform a consistency check. Using the node voltages, we calculate the currents flowing in the circuit and check to see if they sum to zero at each node.

We find i_x using v_3 and the 31 V source.

$$i_x = \frac{31 \text{ V} - 20 \text{ V}}{110 \text{ k}\Omega} = \frac{11 \text{ V}}{110 \text{ k}\Omega} = 100 \text{ }\mu\text{A}$$

We find the other currents by using Ohm's law. The diagram below shows that the currents at every node sum to zero. It follows that our solution is correct.

