Ex:

a) Use the mesh-current method to find i_{1} and i_{2}.
b) Find the power dissipated by the dependent source.
sol'n: a) We follow a step-by-step procedure:

1) We define mesh currents. If, however, we have any current sources on outside edges of the circuit, the mesh currents for those loops will be the same as the current source.

In this circuit, we have a current source on the left edge. Thus, the mesh current for the left loop is $3 m A$.

Since i_{1} and i_{2}, as defined, are on the outside edge of the circuit, we may use them as our mesh currents.

2) We define the voltage from the dependent sro, v_{x}, in terms of mesh currents. Here, we observe that v_{x} is across the $10 \mathrm{k} \Omega$ resistor, too. For the $10 \mathrm{k} \Omega$ resistor, we have

$$
v_{x}=3 \mathrm{~mA} \cdot 10 \mathrm{k} \Omega-i_{1} \cdot 10 \mathrm{k} \Omega
$$

3) We look for loops with a current source in between, meaning we have a super mesh. This is the case for the i_{1}, i_{2} coops. For the $i_{1} i_{2}$ supermesh, we take a v-loop around the outside edge of the i, and i_{2} loops, (bypassing the 0.5 mA ste).

$$
\begin{aligned}
i_{1} i_{2} v-l o o p= & -i_{1} \cdot 10 \mathrm{k} \Omega+30 \mathrm{~V}-2(\overbrace{\left(3 \mathrm{~mA}-i_{1}\right) 10 \mathrm{k} \Omega}^{v_{x}} \\
& +3 \mathrm{~mA} \cdot 10 \mathrm{k} \Omega \\
& -i_{2} \cdot 15 \mathrm{k} \Omega=0 \mathrm{~V}
\end{aligned}
$$

Add a current eg'n for the 0.5 mA arc between the loops:

$$
i_{1}-i_{2}=0.5 \mathrm{~mA}=\frac{1}{2} \mathrm{~mA}
$$

Note: we have $-i_{2}$ for current measured opposite the arrow in the current sro.
4) We solve our eq'ns for i_{1} and i_{2}.

We group i_{1} and i_{2} terms on the left and move constant to the right side.

$$
\begin{aligned}
i_{1}(\underbrace{-10 \mathrm{k} \Omega+2 \cdot 10 \mathrm{k} \Omega}_{=10 \mathrm{k} \Omega})+i_{2}(-15 \mathrm{k} \Omega) & =-60 \mathrm{~V}+60 \mathrm{~V} \\
i_{1} & -i_{2}
\end{aligned}
$$

Solving the $2^{\text {nd }}$ eq'n for i_{1}, we have

$$
i_{1}=i_{2}+\frac{1}{2} m A
$$

substituting into $1^{\text {st }}$ eq'n, we have

$$
\left(i_{2}+\frac{1}{2} m A\right) 10 k \Omega+i_{2}(-15 k \Omega)=30 \mathrm{~V}
$$

or $i_{2}(10 k \Omega-15 k \Omega)=0 V-\frac{1}{2} m A-10 k \Omega$
or $-i_{2}(5 k \Omega)=-5 \mathrm{~V}$
or $\quad i_{2}=1 \mathrm{~mA}$

Then $i_{1}=1 m A+\frac{1}{2} m A=\frac{3}{2} m A$.
Consistency check: calculate v-drops for i_{1}, i_{2} and verify v-loops.

$$
v_{x}=\frac{3}{2} m A \cdot 10 \mathrm{k} \Omega=15 \mathrm{~V}
$$

All v-loops sum to $O V$, and all current sums at nodes $=O A$.
b) We know $v_{x}=\left(3 m A-i_{1}\right) 10 k \Omega$

$$
\begin{aligned}
& v=\frac{3}{2} m A \cdot 10 \mathrm{k} \Omega \\
& v_{x}=15 \mathrm{~V}
\end{aligned}
$$

The current for the dependent sro is i_{2}.

$$
i_{2}=1 \mathrm{~mA}
$$

Thus, power for the dependent sro is

$$
p=v \cdot i=2 v_{x} i_{2}=2(15 \mathrm{~V}) \cdot \operatorname{lm} A
$$

or $p=30 \mathrm{~mW}$.

