Ex:

For the circuit shown, write three independent equations for the node-voltages, v_{1}, v_{2}, and v_{3}. The quantity i_{x} must not appear in the equations.

Sol'n: We define the dependent source variable, i_{x}, in terms of node voltages:

$$
i_{x}=\frac{v_{2}-v_{3}}{R_{5}}
$$

For nodes v_{1} and v_{2}, we have a supernode with a voltage equation and a current summation out of both nodes (excluding the v_{S} source).

$$
\begin{aligned}
& v_{s}=v_{1}-v_{2} \\
& -i_{s}+\frac{v_{1}}{R_{3}}+\frac{v_{2}-v_{3}}{R_{2}}+\frac{v_{2}-v_{3}}{R_{5}}+\frac{v_{2}}{R_{4}}=0 \mathrm{~A}
\end{aligned}
$$

For node v_{3} we must include currents flowing into all components connected by wires to the v_{3} node. We also use the definition of i_{x} in terms of node voltages.

$$
i_{s}+\frac{v_{3}-v_{2}}{R_{2}}+\frac{v_{3}-v_{2}}{R_{5}}-\alpha \frac{v_{2}-v_{3}}{R_{5}}=0 \mathrm{~A}
$$

