Ex:

For the circuit shown, write three independent equations for the three mesh currents i_{1}, i_{2}, and i_{3}. The quantity v_{x} must not appear in the equations.

Sol'n: We first define the variable for the dependent source in terms of mesh currents:

$$
v_{\mathrm{x}}=\left(i_{1}-i_{2}\right) R_{1}
$$

Since the dependent current source is on the outside edge of the circuit, i_{1} is equal to αv_{x} (but in the opposite direction).

$$
i_{1}=-\alpha\left(i_{1}-i_{2}\right) R_{1}
$$

For i_{2} and i_{3}, we have a super-mesh. Thus, we take a voltage loop around the outside of the i_{2} and i_{3} loops. We also write an equation for the i_{s} source in terms of i_{2} and i_{3}.

$$
\begin{aligned}
& -i_{3} R_{3}-i_{2} R_{1}+i_{1} R_{1}-i_{2} R_{2}-i_{3} R_{4}=0 \mathrm{~V} \\
& i_{s}=i_{3}-i_{2}
\end{aligned}
$$

