

1. In (a)-(c), the voltage $v_C(t)$ across a 500 nF capacitor is listed. Find the current, $i_C(t)$, flowing in the capacitor in each case as a function of time:

- a) $v_C(t) = 5 \text{ V}$
- b) $v_C(t) = 30t \, \text{kV/s}$
- c) $v_C(t) = 1 e^{-t/10\mu s} V$
- 2. In (a)-(c), the current $i_L(t)$ flowing into a 2 μ H inductor is listed. Find the voltage, $v_L(t)$, across the inductor in each case as a function of time:

$$L = \begin{cases} v_x \\ v_x \\ - \end{cases}$$

- a) $i_L(t) = 3 \text{ mA}$
- b) $i_L^-(t) = 10t \text{ MA/s}$
- c) $i_L(t) = 8\cos(2\pi \cdot 10\mathbf{k} \cdot t) \,\mu \mathbf{A}$
- 3. The following equation describes the voltage, $v_{\rm C}$, across a capacitor as a function of time. Find the time, t, at which $v_{\rm C}$ is equal to -4 V.

$$v_C(t) = -12 + 10(1 - e^{-t/2\text{ms}}) \text{ V}$$

4. The following equation describes the voltage, v_L , across an inductor as a function of time. Find an expression for the current, $i_L(t)$, through the inductor as a function of time. Assume that $i_L(t=0) = 0$ A.

$$v_L(t) = 10 - 4e^{-t/50 \text{ms}} \text{ V}$$

5. Find the voltage, v_C , on the capacitor in the circuit below as a function of time if $v_C(t=0^+)=6$ V.

$$C = 0.5 \,\mu\text{F} \frac{}{} \frac{}{} \frac{}{} \frac{}{} v_{\text{C}}$$
 $R = 100 \,\text{k}\,\Omega$