Ex: \quad In (a)-(c), the voltage $v_{\mathrm{C}}(t)$ across a 500 nF capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $v_{C}(t)=5 \mathrm{~V}$
b) $\quad v_{C}(t)=30 t \mathrm{kV} / \mathrm{s}$
c) $v_{C}(t)=1-e^{-t / 10 \mu \mathrm{~s}} \mathrm{~V}$

Sol'N: We use the defining equation for a capacitor in each case:

$$
i_{C}=C \frac{d v_{C}}{d t}
$$

a)

$$
i_{C}=C \frac{d}{d t} 5 \mathrm{~V}=0 \mathrm{~A}
$$

b)

$$
i_{C}=C \frac{d}{d t} 30 t \mathrm{kV} / \mathrm{s}=500 \mathrm{nF} \cdot 30 \mathrm{kV} / \mathrm{s}=15 \mathrm{~mA}
$$

c)

$$
\begin{aligned}
& i_{C}=C \frac{d}{d t}\left(1-e^{-t / 10 \mu \mathrm{~s}}\right) \mathrm{V}=500 \mathrm{nF} \cdot\left(-\frac{-1}{10 \mu \mathrm{~s}} e^{-t / 10 \mu \mathrm{~s}}\right) \\
& i_{C}=50 \mathrm{~mA} e^{-t / 10 \mu \mathrm{~s}}
\end{aligned}
$$

