Ex: \quad In (a)-(c), the current $i_{\mathrm{L}}(t)$ flowing into a $2 \mu \mathrm{H}$ inductor is listed. Find the voltage, $\nu_{\mathrm{L}}(t)$, across the inductor in each case as a function of time:

a) $i_{L}(t)=3 \mathrm{~mA}$
b) $i_{L}(t)=10 t \mathrm{MA} / \mathrm{s}$
c) $i_{L}(t)=8 \cos (2 \pi \cdot 10 \mathrm{k} \cdot t) \mu \mathrm{A}$

Sol'n: We use the defining equation for an inductor in each case:

$$
v_{L}=L \frac{d i_{L}}{d t}
$$

a)

$$
v_{L}=L \frac{d}{d t} 3 \mathrm{~mA}=L \cdot 0 \mathrm{~A} / \mathrm{s}=0 \mathrm{~V}
$$

b)

$$
v_{L}=L \frac{d}{d t} 10 t \mathrm{MA} / \mathrm{s}=2 \mu \mathrm{H} \cdot 10 \mathrm{MA} / \mathrm{s}=20 \mathrm{~V}
$$

c)

$$
\begin{aligned}
& v_{L}=L \frac{d}{d t} 8 \cos (2 \pi \cdot 10 \mathrm{k} \cdot t) \mu \mathrm{A}=2 \mu \mathrm{H} \cdot(-8 \sin (2 \pi \cdot 10 \mathrm{k} \cdot t) 20 \mathrm{k} \pi \mu \mathrm{~A} / \mathrm{s} \\
& v_{L}=-320 \pi \sin (2 \pi \cdot 10 \mathrm{k} \cdot t) \mathrm{nV}
\end{aligned}
$$

