

Ex: The following equation describes the voltage, $v_{\rm C}$, across a capacitor as a function of time. Find the time, *t*, at which $v_{\rm C}$ is equal to -4 V.

 $v_C(t) = -12 + 10(1 - e^{-t/2ms})$ V

SOL'N: We begin by substituting the value of -4 V for $v_C(t)$ on the left side.

$$-4 \text{ V} = -12 + 10(1 - e^{-t/2 \text{ms}}) \text{ V}$$

or

$$-4 \text{ V} = -12 + 10 - 10e^{-t/2 \text{ms}} \text{ V}$$

We move constant terms to the left side in order to isolate the exponential.

$$-2 \text{ V} = -10e^{-t/2 \text{ms}} \text{ V}$$

or

 $\frac{1}{5} = e^{-t/2\mathrm{ms}}$

or

$$\ln\frac{1}{5} = -t/2ms$$

Using $\ln(1/x) = -\ln(x)$ and multiplying both sides by 2 ms isolates the *t*:

 $t = 2 \text{ ms} \cdot \ln 5 = 3.29 \text{ ms}$