Ex: The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to -4 V .

$$
v_{C}(t)=-12+10\left(1-e^{-t / 2 \mathrm{~ms}}\right) \mathrm{V}
$$

Sol'n: We begin by substituting the value of -4 V for $v_{C}(t)$ on the left side.

$$
-4 \mathrm{~V}=-12+10\left(1-e^{-t / 2 \mathrm{~ms}}\right) \mathrm{V}
$$

or

$$
-4 \mathrm{~V}=-12+10-10 e^{-t / 2 \mathrm{~ms}} \mathrm{~V}
$$

We move constant terms to the left side in order to isolate the exponential.

$$
-2 \mathrm{~V}=-10 e^{-t / 2 \mathrm{~ms}} \mathrm{~V}
$$

or

$$
\frac{1}{5}=e^{-t / 2 \mathrm{~ms}}
$$

or

$$
\ln \frac{1}{5}=-t / 2 \mathrm{~ms}
$$

Using $\ln (1 / x)=-\ln (x)$ and multiplying both sides by 2 ms isolates the t :

$$
t=2 \mathrm{~ms} \cdot \ln 5=3.29 \mathrm{~ms}
$$

