1. After being open for a long time, the switch closes at $t = 0$.
 Calculate the energy stored on the inductor as $t \to \infty$.

2. For the circuit in problem 1, write a numerical expression for $v(t)$ for $t > 0$.

3. After being closed for a long time, the switch opens at $t = 0$.
 Write an expression for $v_C(t > 0)$ using not more than R_1, R_2, v_s, i_s, and C.
4. a) Calculate the value of R_L that would absorb maximum power.

b) Calculate that value of maximum power R_L could absorb.

5. Using superposition, derive an expression for v_2 that contains no circuit quantities other than i_s, v_s, R_1, R_2, and β where $\beta > 0$.