1. After being closed for a long time, the switch opens at time $t = t_o$. Rail voltages = ± 12 V

Choose either an R or C to go in box a and either an R or C to go in box b to produce the $v_o(t)$ shown above. ($a = C$ and $b = C$ is not a possibility.) Use an R value of 1 kΩ for any R used. Also, note that v_o stays low forever after $t_o + 1.85$ ms.) Specify which element goes in each box and its value.

2. Sketch $v_1(t)$, showing numerical values appropriately.

3. a) Sketch $v_2(t)$, showing numerical values appropriately.
 b) Sketch $v_3(t)$. Show numerical values for $t < t_o$, for $t_o < t < t_o + 1.85$ ms, and for $t > t_o + 1.85$ ms. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
A frequency-domain circuit is shown above. Write the value of phasor current I_1 in polar form.

5. Given $\omega = 10$ rad/s, write a numerical time-domain expression for $i_1(t)$, the inverse phasor of I_1.