1. Find the current, $i_{\rm L}$, through the inductor in the circuit below for t > 0 if $i_{\rm L}(t=0) = 100 \,\mu\text{A}$.

2. Find the voltage, $v_{\rm C}$, across the capacitor in the circuit below for t > 0 if $v_{\rm C}(t=0) = 100 \,\mu \rm V$.

- 3.
- After being open for a long time, the switch closes at t = 0.

- a) Find an expression for $v_{\rm C}(t)$ for $t \ge 0$.
- b) Find the energy stored in the capacitor at time $t = 30 \,\mu s$.

- a) Find an expression for $i_{\rm L}(t)$ for $t \ge 0$.
- b) Find the energy stored in the inductor at time $t = 30 \,\mu s$.

After being zero for a long time, the value of $i_g(t)$ changes to 15 mA at t = 0 (and remains at 15 mA as time increases to infinity).

$$i_{g}(t)$$
 $R = 2 k\Omega$ $i_{R} C = v_{o}$ v_{o}

- a) Find an expression for $v_0(t)$ for t > 0.
- b) Find the current, $i_{\rm R}$, in *R* as a function of time.

5.