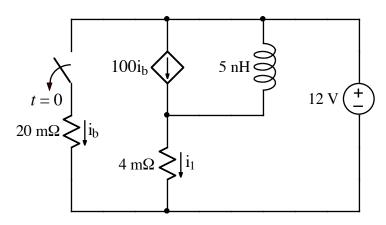
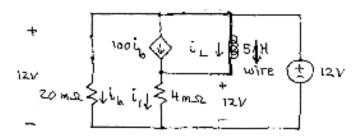
U

Ex:



After being closed for a long time, the switch opens at t = 0. Find $i_1(t)$ for t > 0.

sol'n: t=0" model: (to find i_(o-)) Lacts like wire



We see that the IZV source is across the 20 ms2 and the 4 ms2.

$$i_b = \frac{12V}{20m\Omega} = 600 A$$

and $100i_b = 100.600A = 60 kA$.

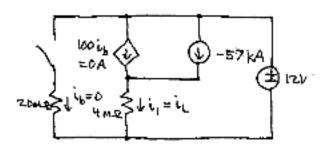
$$i_1 = \frac{12V}{4m \cdot x} = 3kA$$

We find it from a current sum at the center nade.

$$-100i_{b} + i_{1} - i_{L}(0^{-}) = 0 A$$

$$-60 kA + 3kA = i_{L}(0^{-})$$
or $i_{L}(0^{-}) = -57 kA$

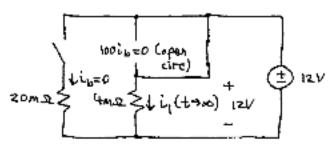
 $\dot{t}=0^+$ model: $\dot{t}_1(0^+)=\dot{t}_1(0^-)=-57$ KA L modeled as current source



Because of the open circuit on the left, we have $i_0 = 0$ and $100i_0 = 0$.

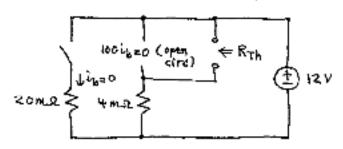
From a current symmation at the center node, we have $i_1(o^+) = i_2(o^+) = -57kA$.

 $t \rightarrow \infty$ model: (to find $i_1(t \rightarrow \infty)$) Lasts (ike wire

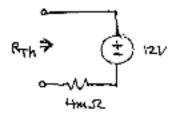


We have 121 across the 4 m.D.

model for T= L/RTh:



We observe that the Thevenin equivalent seen from the terminals where the L is connected is just the 4ms and 12V:



We find R_{Th} by turning off the IZV source, causing it to be a wire. We see $R_{Th} = 4 \text{ m} \Omega$. (The circuit is already a Therenin equivalent.)

Now we use the general form of solution:

$$i_1(t) = i_1(t+\infty) + [i_1(0^{\dagger}) - i_1(t+\infty)] e^{-t/t}$$

or $i_1(t) = 3kA + [-57kA - 3kA] e^{-t/1.2\mu s}$

or $i_1(t) = 3kA + -60kAe$