Ex:

After being closed for a long time, the switch opens at $t=0$. Find $i_{1}(t)$ for $t>0$.

$$
\begin{aligned}
& \text { Fol'n: } t=0^{2} \text { model: (to find } i_{L}\left(0^{-}\right) \text {facts like wire }
\end{aligned}
$$

$$
\begin{aligned}
& \text { We see that the } 12 V \text { source is across } \\
& \text { the } 20 \mathrm{miz} \text { and the } 4 \mathrm{~m}-2 \text {. } \\
& \therefore i_{b}=\frac{12 \mathrm{~V}}{20 \mathrm{~m} \Omega}=600 \mathrm{~A} \\
& \text { and } 100 i_{b}=100.600 \mathrm{~A}=60 \mathrm{kA} \text {. } \\
& i_{1}=\frac{12 V}{4}=3 \mathrm{kA}
\end{aligned}
$$

We find i_{L} from a current sum at the center node.
$-100 i_{b}+i_{1}-i_{L}\left(0^{-}\right)=0 A$
$-60 k A+3 k A=i_{L}\left(0^{-}\right)$
or $i_{\perp}\left(0^{-}\right)=-57 \mathrm{kA}$
$t=0^{+}$model: $\quad i_{2}\left(0^{+}\right)=i_{2}\left(0^{-}\right)=-57 \mathrm{kA}$
L modeled as extent source

Because of the open circuit on the left, we have $i_{4}=0$ and $100 i_{6}=0$.

From a current summation at the center node, we have $i_{1}\left(0^{+}\right)=i_{2}\left(0^{+}\right)=-57 k A$.

$$
i_{1}\left(0^{+}\right)=-57 \mathrm{kA}
$$

$t \rightarrow \infty$ model: (to find $i_{1}(t \rightarrow \infty)$) Lacks (ike wire

We have $12 v$ across the 4 m .

$$
i_{1}(t \rightarrow \infty)=\frac{12 v}{4 m i^{2}}=3 \mathrm{kA}
$$

model for $\tau=L / R_{T h}$:

We observe that the Thevenin equivalent seen from the terminals where the 1 is connected is just the $4 m \sqrt{2}$ and $I 2 V$:

We find $R_{T h}$ by turning off the iv source, causing it to be a arise. We see $R_{\text {Th }}=4$ m 2 . (The circuit is already a Therenin equivalent.)

$$
\therefore \tau=\frac{\mathrm{L}_{2}}{R_{T h}}=\frac{5 \mathrm{nH}}{4 \mathrm{~m} \Omega}=1.2 \mu s
$$

$$
\begin{aligned}
& \text { Now we use the general form of solution: } \\
& i_{1}(t)=i_{1}(t \rightarrow \infty)+\left[i_{1}\left(0^{t}\right)-i_{1}(t \rightarrow \infty)\right] e^{-t / t} \\
& \text { or } i_{1}(t)=3 k A+[-57 k A-3 k A] e^{-t / 1,2 \mu s} \\
& \text { or } i_{1}(t)=3 k A+-60 k A e^{-t / 1.2 \mu s}
\end{aligned}
$$

