

1.

After being open for a long time, the switch closes at t = 0. Calculate the energy stored on the inductor as $t \to \infty$.

2. For the circuit in problem 1, write a numerical expression for $i_1(t)$ for t > 0.

3.

After being open for a long time, the switch closes at t = 0. Write an expression for $v_{\rm C}(t > 0)$ in terms of at most circuit quantities $R_1, R_2, R_3, i_{\rm S}$, and C.

- a) Calculate the value of $R_{\rm L}$ that would absorb maximum power.
- b) Calculate that value of maximum power $R_{\rm L}$ could absorb.

Using superposition, derive an expression for v_1 that contains no circuit quantities other than i_s , v_s , R_1 , R_2 , R_3 , and β , where $\beta < 0$.

5.