1. 



After being open for a long time, the switch closes at $t=0$.
Calculate the energy stored on the inductor as $t \rightarrow \infty$.
2. For the circuit in problem 1, write a numerical expression for $i_{1}(t)$ for $t>0$.
3.


After being open for a long time, the switch closes at $t=0$. Write an expression for $v_{\mathrm{C}}(t>0)$ in terms of at most circuit quantities $R_{1}, R_{2}, R_{3}, i_{\mathrm{s}}$, and $C$.
4.

a) Calculate the value of $R_{\mathrm{L}}$ that would absorb maximum power.
b) Calculate that value of maximum power $R_{\mathrm{L}}$ could absorb.
5.


Using superposition, derive an expression for $v_{1}$ that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{S}}, R_{1}, R_{2}, R_{3}$, and $\beta$, where $\beta<0$.

