

Ex:

After being open for a long time, the switch closes at t = 0.

- a) Calculate the energy stored on the inductor as $t \to \infty$.
- b) Write a numerical expression for $i_1(t)$ for t > 0.

SOL'N:

$$\begin{array}{c} (+ = 0) \text{ Inductor} \\ (+ = 0) \text{ Ind$$

Thoughtor acts as a wire switch closed.

30V (2(1)) +
$$\frac{4(1)}{4(2k)} + \frac{8k}{8k} = \frac{30}{4k} + \frac{15(2)}{2k(2)}$$

V, $\left(\frac{2(1)}{2(4k)} + \frac{4(1)}{4(2k)} + \frac{8k}{8k}\right) = \frac{30}{4k} + \frac{15(2)}{2k(2)}$

V, $=\frac{60}{4k} \cdot \binom{8k}{7} = \frac{120}{7}$

L, $=\frac{(V_1-15)}{2k} = \binom{120}{7} - \frac{15}{2k} = \frac{11.1mA}{7}$ Value

 $\gamma: (Remove inductor) \quad \gamma = Reg$

Reg = $8k + 4k(12k)$

Reg = $8k + 4k(12k) = \frac{10m}{6} + \frac{10m}{6}$

Reg = $8k + 4k(12k) = \frac{10m}{6} + \frac{10m}{6}$

Reg = $8k + 4k(12k) = \frac{10m}{6} + \frac{10m}{6}$
 $\frac{1}{1}(k) = \frac{10m}{8k} + \frac{10m}{8k} + \frac{10m}{6}$
 $\frac{1}{1}(k) = \frac{10m}{8k} + \frac{120}{8k} \approx 2.1mA$
 $\frac{1}{2} = \frac{1}{2}(10m)(2.1m)^2 = \frac{120}{22.05nJ}$