Ex:

Using superposition, derive an expression for v_{1} that contains no circuit quantities other than $i_{\mathrm{s}}, v_{\mathrm{S}}, R_{1}, R_{2}, R_{3}$, and β, where $\beta<0$.

Sols:
(1)

node- V :

$$
-I_{s}+\frac{V_{2}}{R_{2}}+\frac{V_{2}-\beta i x}{R_{3}}=0
$$

$$
i_{x}=\frac{V_{2}}{R_{2}}
$$

$$
\begin{aligned}
& -I_{S}+\frac{V_{2}}{R_{2}}+\frac{V_{2}}{R_{3}}-\frac{\beta \cdot V_{2}}{R_{3} \cdot R_{2}}=0 \\
& V_{2}\left(\frac{1\left(R_{3}\right)}{R_{2} R_{3}^{+}} \frac{1\left(R_{2}\right)}{R_{3} R_{2}}-\frac{\beta}{R_{2} R_{3}}\right)=I_{S} \\
& V_{2}=\frac{I_{S}\left(R_{2} R_{3}\right)}{R_{2}+R_{3}-\beta} \\
& V_{1}=\left(1-\frac{\beta}{R_{2}}\right)\left(\frac{I_{5} R_{2} R_{3}}{R_{2}+R_{3}-\beta}\right)
\end{aligned}
$$

$$
\begin{aligned}
& V_{2}\left(R_{2} R_{3}^{+} R_{3} R_{2} \quad R_{2} R_{3}\right) \\
& V_{2}=\frac{I_{S}\left(R_{2} R_{3}\right)}{R_{2}+R_{3}-\beta}
\end{aligned} \quad \rightarrow+V_{2}-\beta\left(\frac{V_{2}}{R_{2}}\right)-V_{1}=0
$$

(2) Is off, V_{s} on: $\beta i_{x} \quad V$-loop: $-i_{x} R_{3}+\beta i_{x}-i_{x} R_{2}-V_{s}=0$

$$
V_{1}=V_{1}+V_{2}=\left(1-\frac{B}{R_{2}} \frac{1}{2} \frac{1}{2} \frac{R_{1}+R_{3}+R_{3} p}{p}+\frac{V_{5} R_{3}}{R_{1}+T_{3} p^{2}}\right.
$$

