Ex: Give numerical answers to each of the following questions:
a) Find the value of $z=6-j 5+-3+j 3$.
b) Find the magnitude of $z=5+j 12$.
c) Find the conjugate of $z=\frac{2+j 2}{-j}$.
d) Find the real part of $z=e^{j \pi / 2}$.
e) Find the value of $z=(6-j 5)(-3+j 3)$.

Sol'n: a) Sum the real parts, and sum the imaginary parts.

$$
z=6-j 5+-3+j 3=6-3+j(5-3)=3-j 2
$$

b) Think of the complex number as a vector. Use the Pythagorean theorem to find the magnitude (or length) of this vector.

$$
|z|=\sqrt{5^{2}+12^{2}}=\sqrt{169}=13
$$

c) We use an asterisk to designate a conjugate. To find the conjugate, we change each j to $-j$.

$$
z^{*}=\left(\frac{2+j 2}{-j}\right)^{*}=\frac{2+-j 2}{--j}=\frac{2-j 2}{j}=-j(2-j 2)=-2-j 2
$$

d) We use Euler's formula.

$$
\operatorname{Re}\left[z=e^{j \pi / 2}\right]=\operatorname{Re}[\cos (\pi / 2)+j \sin (\pi / 2)]=\cos (\pi / 2)=0
$$

e) We use the distributive property to multiply the numbers.

$$
\begin{aligned}
& z=(6-j 5)(-3+j 3)=6(-3)-j^{2} 5(3)+6(j 3)-j 5(-3) \\
& z=-18+15+j 18+j 15=-3+j 33
\end{aligned}
$$

