Ex: Draw the frequency-domain circuit diagram (with numerical values for impedances and phasors [except the dependent source which will be labeled $6 \mathbf{I}_{\mathrm{x}}$]) for the following circuit:

Sol'n: In the frequency-domain, we use phasors for voltages and currents, and impedances for resistors, capacitors, and inductors.

The phasor transform is captured by the following equation:

$$
\mathrm{P}[A \cos (\omega t+\phi)]=A e^{j \phi} \equiv A \angle \phi
$$

We apply this equation to v_{s} and i_{s} using the same units in the frequencydomain as in the time-domain. The circuit diagram, below, shows the values.

The impedances are calculated with the following formulas:

$$
z_{R}=R \quad z_{L}=j \omega L \quad z_{C}=\frac{1}{j \omega C}=\frac{-j}{\omega C}
$$

The values are shown on the circuit diagram below. We may save some effort by noting that doubling the value of L increases the impedance by a factor of two, whereas doubling the value of C decreases the impedance by a factor of two.

