Ex: \quad Given $\omega=10 \mathrm{krad} / \mathrm{s}$, for each of the following impedances, determine which of the following the impedance is from: a capacitor, an inductor, or a resistor. Also, find the value of that capacitor, inductor, or resistor.
a) $1 \mathrm{k} \Omega$
b) $\quad-j 50 \Omega$
c) $j 400 \Omega$
d) $-j 2 \mathrm{k} \Omega$
e) $j 8 \mathrm{k} \Omega$

SoL'n: a) A real value of impedance originates from a resistance, and the value of the impedance in the frequency-domain is the same as the resistance in the time-domain.

$$
R=1 \mathrm{k} \Omega
$$

b) A purely imaginary and negative value of impedance originates from a capacitance, and the value of the impedance in the frequency-domain is inversely proportional to the capacitance in the time-domain.

$$
z_{C}=\frac{1}{j \omega C}
$$

or

$$
-j 50 \Omega=\frac{1}{j 10 \mathrm{kr} / \mathrm{s} \cdot C}
$$

or

$$
C=\frac{1}{j 10 \mathrm{k} \mathrm{r} / \mathrm{s} \cdot-j 50 \Omega}=\frac{1}{500 \mathrm{k}} \mathrm{~F}=2 \mu \mathrm{~F}
$$

c) A purely imaginary and positive value of impedance originates from an inductor, and the value of the impedance in the frequency-domain is proportional to the inductor in the time-domain.

$$
z_{L}=j \omega L
$$

or

$$
j 400 \Omega=j \omega L
$$

or

$$
L=\frac{j 400 \Omega}{j 10 \mathrm{k} \mathrm{r} / \mathrm{s}}=40 \mathrm{mH}
$$

d) This impedance is 40 times as high as that in part (b). This requires a capacitance that is 40 times smaller.

$$
C=50 \mathrm{nF}
$$

e) This impedance is 20 times as high as that in part (b). This requires an inductance that is 20 times larger.

$$
L=800 \mathrm{mH}=0.8 \mathrm{H}
$$

