Ex: \quad Derive a symbolic expression for the impedance of an R, an L, and a C in parallel at frequency ω. Rationalize the expression so the denominator is real.

SoL'n: When working with parallel impedances, it is typically easier to use the summation of conductance form of parallel impedance.

$$
z=\frac{1}{\frac{1}{R}+\frac{1}{\frac{1}{j \omega C}}+\frac{1}{j \omega L}}=\frac{1}{\frac{1}{R}+j \omega C+\frac{1}{j \omega L}}
$$

Keeping real parts and imaginary terms together reduces the complexity, so we sum the imaginary terms.

$$
z=\frac{1}{\frac{1}{R}+j\left(\omega C-\frac{1}{\omega L}\right)}
$$

At this point, we may choose from several different approaches. One choice would be to rationalize the expression. Another choice would be to write z as a ratio of polynomials in ω. A third choice would be to make the denominator unitless by multiplying by R. Their are more choices available as well, and which is chosen is a matter of personal preference. Here, we make the third choice and make the denominator unitless.

$$
z=\frac{R}{1+j R\left(\omega C-\frac{1}{\omega L}\right)}
$$

Now we rationalize the expression to obtain our final answer.

$$
z=\frac{R}{1+j R\left(\omega C-\frac{1}{\omega L}\right)} \frac{1-j R\left(\omega C-\frac{1}{\omega L}\right)}{1-j R\left(\omega C-\frac{1}{\omega L}\right)}=\frac{R-j R^{2}\left(\omega C-\frac{1}{\omega L}\right)}{1^{2}+R^{2}\left(\omega C-\frac{1}{\omega L}\right)^{2}}
$$

