Ex: \quad Find the total impedance of the circuitry shown below if $\omega=1000 \mathrm{rad} / \mathrm{s}$.

Sol'n: We convert to the frequency-domain by computing impedances.

$$
\begin{aligned}
& j \omega L=j 1 \mathrm{k} \cdot 250 \mathrm{~m} \Omega=j 250 \mathrm{k} \Omega \\
& \frac{1}{j \omega C}=\frac{1}{j 1 \mathrm{k} \cdot 4 \mu} \Omega=-j 250 \Omega \\
& j \omega L=j 1 \mathrm{k} \cdot 100 \mathrm{~m} \Omega=j 100 \mathrm{k} \Omega \\
& \frac{1}{j \omega C}=\frac{1}{j 1 \mathrm{k} \cdot 10 \mu} \Omega=-j 100 \Omega
\end{aligned}
$$

The circuit diagram in the frequency-domain is shown below.

The series L and C in series at the top left of the circuit sum to zero, which means they cancel out to act like a wire. The parallel L and C at the right combine to create an equivalent impedance of infinity, or an open circuit.

$$
j 100\|-j 100 \Omega=j 100 \Omega \cdot 1\|-1=j 100 \Omega \cdot \frac{1(-1)}{1-1}=j 100 \Omega \cdot \frac{1}{0}=\infty \Omega
$$

Thus, the L and C on the right disappear. We are left with a simple circuit consisting of only two resistors:

The equivalent impedance is obviously $10 \mathrm{k} \Omega$.

$$
z_{\mathrm{tot}}=10 \mathrm{k} \Omega
$$

