Ex: $\quad$ Give numerical answers to each of the following questions:
a) Rationalize $\frac{5(j 20)}{-10-j 20}$. Express your answer in rectangular form.
b) Find the polar form of $\left(\frac{5(j 20)}{-10-j 20}\right)^{*} .($ Note: the asterisk means "conjugate".)
c) Given $\omega=2 \mathrm{k} \mathrm{rad} / \mathrm{sec}$, find the following inverse phasor:

$$
\mathrm{P}^{-1}[j 50 \mathrm{~V}]
$$

d) Find the magnitude of $\left(\frac{2 j^{2}}{1+j}\right)\left(\frac{e^{j} \sqrt{j}}{1-j}\right)$.
e) Find the imaginary part of $\frac{e^{-j 90^{\circ}}}{1-j}$.

SoL'n: a) First, we cancel common factors in the numerator and denominator.

$$
\frac{5(j 20)}{-10-j 20}=\frac{(j 20)}{-2-j 4}=\frac{j 10}{-1-j 2}
$$

Second, we multiply by the conjugate of the denominator.

$$
\frac{j 10}{-1-j 2}=-\frac{j 10}{1+j 2} \frac{1-j 2}{1-j 2}
$$

Third, we simplify the numerator and denominator.

$$
-\frac{j 10}{1+j 2} \frac{1-j 2}{1-j 2}=-\frac{j 10+20}{1^{2}+2^{2}}=-\frac{20+j 10}{5}
$$

Fourth and last, we cancel common factors in the numerator and denominator once again.

$$
\frac{5(j 20)}{-10-j 20}=-4-j 2
$$

b) We need only take the conjugate of the answer to part (a). To take the conjugate, we change each $j$ to $-j$.

$$
\left(\frac{5(j 20)}{-10-j 20}\right)^{*}=-4+j 2
$$

c) The inverse phasor for $j$ is $-\sin (\omega t)$ or $\cos \left(\omega t+90^{\circ}\right)$. We scale this by 50 for our answer.

$$
\mathrm{P}^{-1}[j 50]=50 \cos \left(2 \mathrm{k} t+90^{\circ}\right) \mathrm{V}
$$

d) The magnitude of a product or quotient is the product or quotient of the magnitudes.

$$
\left|\left(\frac{2 j^{2}}{1+j}\right)\left(\frac{e^{j} \sqrt{j}}{1-j}\right)\right|=\frac{|2||j|^{2}}{|1+j|} \frac{\left|e^{j}\right||\sqrt{j}|}{|1-j|}=\frac{2 \cdot 1^{2} \cdot 1 \cdot\left|e^{j \pi / 2}\right|^{1 / 2}}{\sqrt{2} \cdot \sqrt{2}}=\frac{2 \cdot 1^{1 / 2}}{2}=1
$$

e) To find the imaginary part, we express the quantity in rectangular form.

$$
\begin{aligned}
\operatorname{Im}\left(\frac{e^{-j 90^{\circ}}}{1-j}\right) & =\operatorname{Im}\left(\frac{-j}{1-j}\right)=\operatorname{Im}\left(\frac{-j}{1-j} \frac{1+j}{1+j}\right)=\operatorname{Im}\left(\frac{-j+1}{1^{2}+1^{2}}\right) \\
& =\operatorname{Im}\left(\frac{1-j}{2}\right)=-\frac{1}{2}
\end{aligned}
$$

