Ex:

a) Choose an R, an L, or a C to be placed in the dashed-line box to make $i(t)=\mathrm{I}_{0} \cos \left(1 \mathrm{k} t+45^{\circ}\right)$
where I_{0} is a positive, (i.e., nonzero and non-negative), real constant with units of Amps. State the value of the component you choose.
b) Using the value of the component you chose for part (a), calculate the resulting value of I_{0}.

Sol'n: a) We start by finding the s-domain model.

$$
\begin{aligned}
I_{S}= & P\left[3 \sin \left(1 k t+45^{\circ}\right) A\right]=3 \cos \left(1 k t+45^{\circ}-90^{\circ}\right) A \\
& =3 \cos \left(1 k t-45^{\circ}\right) A=3 L-45^{\circ} \\
I & =P\left[I_{0} \cdot \cos \left(1 k t+45^{\circ}\right)\right]=I_{0} L+45^{\circ} \\
Z_{L} & =j \omega L=j(1 k)(2 H)=j 2 k
\end{aligned}
$$

we have a current Divider

$$
\begin{aligned}
& \Rightarrow I=I_{S} \frac{z_{L}}{z_{L}+\left(z_{R}+z_{B}\right)}=3 L-45^{\circ} \frac{j \partial K}{j \partial K+2 K+z_{B}}=I_{0} L 45^{\circ} \\
& \Rightarrow \frac{L 3 L+45^{\circ}\left(2 K \angle 90^{\circ}\right)}{\angle j 0 K+2 K+Z_{B}}=\angle\left(I_{0} \angle 45^{\circ}\right) \\
& \Rightarrow \frac{\angle-45^{\circ}+90^{\circ}}{\angle\left(j \alpha k+2 k+2_{B}\right)}=\angle 45^{\circ} \Rightarrow \angle\left(j 2 k+2 k+z_{B}\right)=\frac{\angle 45^{\circ}}{\angle 45^{\circ}}=\angle 0^{\circ}
\end{aligned}
$$

we need $\angle 0^{\circ}$ and if we have -jar in the box we are left with the resistor creating $\angle 0^{\circ}$

$$
\begin{aligned}
& \Rightarrow j \partial k+2 k+\frac{-j}{w c}=2 k \Rightarrow j a k=\frac{+1}{w c} \\
& \Rightarrow 1 / w c=2 k \Rightarrow 1 /(k)(c)=2 k \Rightarrow 1 / c=2 M \\
& \Rightarrow c=1 / 2 m=0.5 n t=500 n t \Rightarrow B o x=c=500 n t \\
& \Rightarrow z_{c}=-j / w c=-j 2 k
\end{aligned}
$$

$$
\begin{gathered}
\text { b) } \Rightarrow I=\frac{\left(3 L-45^{\circ}\right)(+j a k)}{j \partial k+2 k-j a k}=\frac{\left(3 L-45^{\circ}\right)\left(2 k L+90^{\circ}\right)}{2 k} \\
\Rightarrow I_{0}=\operatorname{Re}[I]=\operatorname{Re}\left[\frac{6 k L+45^{\circ}}{2 k}\right]=\frac{6 k}{2 k}=3 \mathrm{~A} \\
\Rightarrow I_{0}=3 \mathrm{~A}
\end{gathered}
$$

