Ex:

After being in position \mathbf{c} for a long time, the switch moves from \mathbf{c} to \mathbf{d} at $t=t_{\mathrm{o}}$.
Rail voltages $= \pm 12 \mathrm{~V}$

a) Choose either an R or C to go in box \mathbf{a} and either an R or C to go in box \mathbf{b} to produce the $v_{\mathrm{O}}(\mathrm{t})$ shown above. (Note that v_{O} stays high forever after $t_{\mathrm{O}}+2 \mathrm{~ms}$.) Specify which element goes in each box and its value.
b) Sketch $v_{1}(\mathrm{t})$, showing numerical values appropriately.
c) Sketch $v_{2}(\mathrm{t})$, showing numerical values appropriately.
d) Sketch $v_{3}(\mathrm{t})$. Show numerical values for $t<t_{\mathrm{o}}$, for $t_{\mathrm{O}}<t<t_{\mathrm{O}}+2 \mathrm{~ms}$, and for $t_{\mathrm{O}}+2 \mathrm{~ms}<t$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
sol'n: a) For \%o to be low, (ie., -12V), we must have $v_{z}<v_{1}$.

To find v_{1}, we slide the $4 y$ source through the $6 k \Omega$ resistor and find that we have the equivalent of a -15 V source and a voltage divider formed by the $3 k \Omega$ and $6 k \Omega$ resistors.

$$
v_{i}=-15 V \cdot \frac{3 \mathrm{k} \Omega}{3 \mathrm{k} \Omega+6 \mathrm{k} \Omega}=-5 V
$$

At $t=0^{-}$, we mast have $v_{2}<-5 V$.
$a=R \quad b=c\left[\begin{array}{l}\text { This is possible only if bax a } \\ \text { contains a resistor and box b } \\ \text { contains a capacitor. Is a is }\end{array}\right.$ an R and B is a C, then the \rightarrow will charge until $v_{z}=-10 V<v_{1}$.

When the switch moves from c to d, the capacitor voltage start charging toward ob, bat it will still be -fol initially. This gives the desired waveform for $v_{0}(t)$: v_{0} wite go high when $v_{2}=v_{i}=-5 V$.

Note: The reasons why other components in boxes a and b fail to yield the desired $v_{0}(4)$ are as fellows:
$a=R$ and $b=R$ cannot give
a waveform that changes after
a delay. Yo would have to change instantly at $t=t_{0}$.
$a=c$ and $b=R$ would result
in c charging until no current
flows in R. This means $v_{2}=0 \mathrm{~V}$,
or $v_{2}>v_{1}$, causing v_{0} to be high before $t=t_{d}$.
$a=C$ and $b=C$ word result in an arbitrary voltage at v_{2}. The total voltage drop across the two c's would be 10%. When the switch changes from c to d, the capacitors would charge until the total voltage drop across them was ot. The same current would flow in both C's, causing a voltage change that would be inversely proportional to the C values. The waveform shown for $v_{0}(t)$ could be produced, bat there is a lack of control over the initial value of v_{2}. This would make the timing of the $v_{0}(t)$ waveform uncertain. Thus, we reject Ht is seiution.

Now we find possible values for R and C. lie hare the following circuit model for $t>t_{s}$

$$
\begin{gathered}
v_{c}\left(t>t_{0}\right)=v_{c}(t \rightarrow \infty)+\left[v_{c}\left(t_{d}^{+}\right)-v_{c}(t \rightarrow \infty)\right] e \\
11 \\
o v \\
\\
\text { iv } 10 \mathrm{iv}
\end{gathered}
$$

$v_{c}\left(t>t_{0}\right)=-10 e^{-t / \tau} v \quad$ (where we take $t_{0}=0$)
where $\tau=(R+i k \Omega) C$

We want $v_{c}\left(\frac{t}{2}=2 \mathrm{~ms}\right)=v_{1}=-5 V$
or

$$
\begin{aligned}
-10 e^{-2 m \xi / \tau} V & =-5 v \\
e^{-2 m+/ \tau} & =\frac{1}{2} \\
-2 \mathrm{~ms} & =t \ln \frac{1}{2} \\
\tau & =\frac{-2 \mathrm{~ms}}{\ln 2} \pm 2.9 \mathrm{~ms}
\end{aligned}
$$

One sown is $R=1.9 \mathrm{k} \Omega$ and $C=1, \mu F$. Note: $R=D \Omega$ is min $R, C=2, q \mu F$ is max C.
b) $v_{1}(t)=-5 V$ as shown earlier.

c) $\quad v_{2}=v_{4}\langle t>0\rangle=-10 v e^{-t / 2.9 \mathrm{~ms}}$ from (a)

d) When v_{0} is Low, the top diode will act Like a wire and the bottom diode wild act like an open circuit.

We have a voltage divider: $v_{3}=-12 \mathrm{~V} \cdot \frac{5 \mathrm{k} \Omega}{2 \mathrm{k} \Omega+5 \mathrm{k} \Omega}=-\frac{60}{7} \mathrm{~V}$.

When v_{0} is high, the top diode will act like an open circuit, leaving the bottom part of the circuit disconnected from v_{0}, (or any other power source).

Thus $v_{3}=O V$ when v_{o} is high.

