Ex:

a) A frequency-domain circuit is shown above. Write the value of phasor \mathbf{V}_{3} in polar form.
b) Given $\omega=37 \mathrm{rad} / \mathrm{s}$, write a numerical time-domain expression for $v_{3}(\mathrm{t})$, the inverse phasor of \mathbf{V}_{3}.
sol'n: a) The $j 3 k \Omega$ and $-j 3 k \Omega$ sum to $0 . \Omega=$ wire.

Thus, the $15 k n$ is bypassed by a short and may be ignored.

It also follows that the $12+j 12 \mathrm{~V}$ is directly across the $j \in \Omega$ and directly across the $j \geq I_{x}$ source in series with the Bks resistor.
our circuit prodel is as follows:

By Ohm's law, $I_{x}=\frac{12+j k V}{j 6 \Omega}=\frac{2(i+j)}{j} \mathrm{~A}$
or $\mathbb{I}_{x}=-j z(1 i j) A$
or $\mathbb{I}_{x}=2-j z A$
It follows that $j 2 I X=j 2(2-j 2) v=4+j 4 v$.
From a v-loop around the outside of the circuit, we have the following:

$$
V_{3}=(12+j(2) V-(4+j 4) V
$$

or $\quad V_{3}=8+j 8 V$
or $\quad V_{3}=8 \sqrt{2} \angle 45^{a} V$

b)

$$
\begin{aligned}
& v_{3}(t)=P^{-1}\left[81 \overline{2}<45^{\circ} V\right], \quad \omega=37 \mathrm{rad} / 5 \\
& v_{3}(t)=8 \sqrt{2} \cos \left(37 t+45^{\circ}\right) V
\end{aligned}
$$

