Ex:

Find $\mathrm{i}_{\mathrm{x}}, \mathrm{v}_{1}$, and the power dissipated by the dependent source.

Sol'n: First, we observe that i_{x} flows thru all 3 resistors since they are in series.

Rather than defining voltages for every resistor, we may use Ohm's law directly to de $\frac{r}{i}$ ane the voltages as $v=i R$. Note that the + and - signs of the voltage measurements must obey the passive sign convention: the current arrows must point toward the - sign of the v-drop measurement.

Turning to v-loop egos, we discover that all loops pass thru current sources, meaning we. should avoid writing those voloop egins.

Note: even though the dependent current source is labeled with a vrdrop, we should avoid using V_{1} in a v-loop. Instead, we can solve the circuit first and then find v_{1}.

We now write a curpent-sum ign for the top-denter mode:

$$
-5 i_{x}+8 m A+i_{x}=0 A
$$

or $4 i_{x}=8 \mathrm{~mA}$
or $\quad i_{x}=2 m A$

Now we use a v-bop around the outside of the circuit to find v_{1} :

$$
\text { or } \begin{aligned}
-v_{1} & =i_{x} 15 \mathrm{k} \Omega-i_{x} 20 \mathrm{k} \Omega-i_{x} 10 \mathrm{k} \Omega+60 \mathrm{~V}=0 \mathrm{~V} \\
v_{1} & =-i_{x}(15 \mathrm{k} \Omega+20 \mathrm{k} \Omega+10 \mathrm{k} \Omega)+60 \mathrm{~V} \\
& =-2 \mathrm{~mA} \cdot 45 \mathrm{k} \Omega+60 \mathrm{~V} \\
& =-90 \mathrm{~V}+60 \mathrm{~V} \\
v_{1} & =-30 \mathrm{~V}
\end{aligned}
$$

The power for the dependent source is

$$
\begin{aligned}
& P=i \cdot V=5 i_{x} V_{1}=5(2 m A)(-30 V) \\
& P=-300 \mathrm{~mW}
\end{aligned}
$$

