Ex:

Using Ohm's law and the node voltages, find the currents for all the resistors.
Sol'n: Using the voltage sources directly connecting nodes, we have the following node voltages:

The difference in node voltages gives the voltage drop across each resistor, and Ohm's law gives the current. The following table lists v-drops and currents (measured with arrows pointing down or to the right) of each resistor.

R	Ω	V-drop	$i=v-$ drop $/ R$
R_{1}	2 K	$19 \mathrm{~V}-4 \mathrm{~V}=15 \mathrm{~V}$	7.5 mA
R_{2}	1 K	$19 \mathrm{~V}-4 \mathrm{~V}=15 \mathrm{~V}$	15 mA
R_{3}	3 K	$4 \mathrm{~V}-16 \mathrm{~V}=-12 \mathrm{~V}$	-4 mA
R_{4}	10 k	$4 \mathrm{~V}-16 \mathrm{~V}=-12 \mathrm{~V}$	-1.2 mA
R_{5}	1.5 k	$9 \mathrm{~V}-3 \mathrm{~V}=6 \mathrm{~V}$	4 mA
R_{6}	12 k	$3 \mathrm{~V}-0 \mathrm{~V}=3 \mathrm{~V}$	0.25 mA

