Ex:

a) Use the node-voltage method to find v_{1}.
b) Find the equivalent resistance for the 10Ω and 15Ω resistors in parallel. Then use the voltage divider formula to find v_{1}. Verify that both (a) and (b) have the same answer.

Sol'n: a) We sum the currents out of the V_{1}-node.

$$
\frac{v_{1}-15 V}{9 \Omega}+\frac{v_{1}}{10 \Omega}+\frac{v_{1}}{15 \Omega}=0 \mathrm{~A}
$$

Now group the factors multiplying V_{1} and move constants the other side of the equation:

$$
v_{1}\left(\frac{1}{9 \Omega}+\frac{1}{10 \Omega}+\frac{1}{15 \Omega}\right)=\frac{15 \mathrm{~V}}{9 \Omega}
$$

Multiplying both sides by the least common denominator simplifies the math.

$$
90 \Omega \cdot v_{1}\left(\frac{1}{9 \Omega}+\frac{1}{10 \Omega}+\frac{1}{15 \Omega}\right)=\frac{15 v}{9 \Omega} \cdot 90 \Omega
$$

or

$$
v_{1}(10+9+6)=150 \mathrm{~V}
$$

or

$$
v_{1}=\frac{150 \mathrm{~V}}{25}=6 \mathrm{~V}
$$

To check our answer, we calculate the currents in the resistors and verify that the total surrent out of the
v_{1}-node equals zero:

$$
-1 A+\frac{3}{5} A+\frac{2}{5} A=O A
$$

b) If we combine the 10Ω and 15Ω in parallel, we get 6Ω :

$$
10 \Omega\|15 \Omega=5 \Omega \cdot 2\| 3=5 \Omega \cdot \frac{2(3)}{2+3}=6 \Omega
$$

Substituting one 6Ω resistor for the 10Ω and 15Ω resistors creates a voltage divider:

$$
v_{1}=15 v \cdot \frac{6 \Omega}{6 \Omega+9 \Omega}=15 \mathrm{v} \cdot \frac{6}{15}=6 \mathrm{v}
$$

Thus, we get the same answer as before.

