Ex:

Use the node-voltage method to find a formula for v_{1}. Write your answer as a sum of a voltage divider for $v_{\mathrm{s} 1}$ and a voltage divider for $v_{\mathrm{s} 2}$.

Sol'N: We sum the currents out of the v_{1} node:

$$
\frac{v_{1}-v_{51}}{R_{1}}+\frac{v_{1}-v_{52}}{R_{2}}=O A
$$

$$
\left.\begin{array}{l}
\text { Note: We can use the node-voltage } \\
\text { method even for a point in the } \\
\text { circuit that is not the meeting } \\
\text { point for three or more wines. } \\
\text { Simplifying our equation reveals that it } \\
\text { is the sum of two voltage dividers: } \\
v_{1}\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=\frac{v_{s 1}}{R_{1}}+\frac{V_{s 2}}{R_{2}} \\
\text { or }(a f t e r ~ m u l t i p l y i n g ~ b o t h ~ s i d e s ~ b y ~ \\
R_{1}+R_{2}
\end{array}\right)
$$

