Ex:


For the circuit shown, write three independent equations for the node-voltages, $v_{1}, v_{2}$, and $v_{3}$. The quantity $v_{\mathrm{x}}$ must not appear in the equations. Only component and source names may appear in answer.

Sol'n:
Supernode between $V_{1}$ and $V_{2}^{-}$:
(1) $\left(V_{1}-V_{2}\right)=\alpha V_{x}$

$$
V_{x}=-\frac{\left(V_{2}-V_{3}\right) R_{5}}{R_{4}+R_{5}}
$$

(1) $\left(V_{1}-V_{2}\right)=\frac{-\alpha R_{5}\left(V_{2}-V_{3}\right)}{R_{4}+R_{5}}$
(2) $\frac{V_{1}}{R_{1}}+\frac{\left(V_{1}+V_{5}-V_{2}\right)}{R_{3}}-\frac{\left(V_{1}+V_{5}-V_{2}\right)}{R_{3}}+\frac{V_{2}}{R_{2}}+I_{51}+\frac{\left(V_{2}-V_{3}\right)}{R_{4}+R_{5}}=0$.
at node $V_{3}$ :
(3) $-I_{s 1}-I_{S_{2}}-\frac{\left(V_{2}-V_{3}\right)}{R_{4}+R_{5}}=0$

