Ex:

For the circuit shown, start with three independent equations for the node-voltages, v_{1}, v_{2}, and v_{3}. The quantity v_{x} must not appear in the equations. Only component and source names may appear in answer.

Make at least one consistency check (other than a units check) on your three equations. In other words, choose component values that make the values of v_{1}, v_{2}, and v_{3} obvious, and verify that your answer to problem 1 gives these values. State the values of resistors and sources for your consistency check.

Sol'n: Many solutions are possible. One possible check is as follows:

$$
\begin{aligned}
& R_{2}=\infty, R_{3}=\infty, i_{s 1}=0 \\
& R_{1}=1 \Omega, R_{4}=4 \Omega, R_{5}=5 \Omega, \\
& v_{s}=24 \mathrm{~V}, \alpha=12, i_{s 2}=6 \mathrm{~A}
\end{aligned}
$$

With these choices of values, we have open circuits for R_{2} and R_{3}, and current source $i_{\mathrm{s} 2}$ in series with R_{4}, R_{5}, and R_{1}. By Ohm's law, we get the following v-drops (with + on top of R_{1} and + on bottom of R_{4}):

$$
v_{R 1}=6 \mathrm{~V}, v_{R 4}=24 \mathrm{~V}, v_{R 5}=30 \mathrm{~V}
$$

We also have the v-drop for the dependent source as follows:

$$
\alpha v_{\mathrm{x}}=12(30) \mathrm{V}=360 \mathrm{~V}
$$

Following v-drops from the reference $=0 \mathrm{~V}$, up through R_{1}, through the dependent source, through R_{4} and R_{5}, we find the node v's:

$$
\begin{aligned}
& v_{1}=v_{R 1}=6 \mathrm{~V} \\
& \mathrm{v}_{2}=v_{1}-\alpha v_{\mathrm{x}}=6 \mathrm{~V}-360 \mathrm{~V}=-354 \mathrm{~V} \\
& v_{3}=v_{2}+v_{R 5}+v_{R 4}=-354 \mathrm{~V}+30 \mathrm{~V}+24 \mathrm{~V}=-300 \mathrm{~V}
\end{aligned}
$$

Now we plug the numbers into the equations from node-v analysis to see if we get equality:

$$
\begin{aligned}
& v_{1}-\alpha\left(v_{3}-v_{2}\right) \frac{R_{5}}{R_{4}+R_{5}}=v_{2} \\
& \frac{v_{1}}{R_{1}}+\frac{v_{1}+v_{s}-v_{2}}{R_{3}}+\frac{v_{2}}{R_{2}}+\frac{v_{2}-v_{3}}{R_{4}+R_{5}}=0 \mathrm{~V} \\
& -i_{s 1}-i_{s 2}+\frac{v_{3}-v_{2}}{R_{4}+R_{5}}=0 \mathrm{~A}
\end{aligned}
$$

or

$$
\begin{aligned}
& 6 \mathrm{~V}-12(-300--354) \frac{5}{4+5} \stackrel{?}{=}-354, \quad 6-12(54) \frac{5}{9}=6-12(30)=-354 \sqrt{ } \\
& \frac{6 \mathrm{~V}}{1 \Omega}+\frac{6 \mathrm{~V}+24 \mathrm{~V}--354 \mathrm{~V}}{\infty}+\frac{-354 \mathrm{~V}}{\infty}+\frac{-354 \mathrm{~V}--300 \mathrm{~V}}{4 \Omega+5 \Omega} \stackrel{?}{=} 0 \mathrm{~V}, \quad 6 \mathrm{~A}-\frac{54 \mathrm{~V}}{9 \Omega}=0 \mathrm{~V} \sqrt{ } \\
& -0 \mathrm{~A}-6 \mathrm{~A}+\frac{-300--354 \mathrm{~V}}{4 \Omega+5 \Omega} \stackrel{?}{=} 0 \mathrm{~A}, \quad-6 \mathrm{~A}+\frac{54 \mathrm{~V}}{9 \Omega}=0 \mathrm{~A} \quad \sqrt{ }
\end{aligned}
$$

The equations hold true for this example. The node-v equations pass this consistency check.
b) Using mesh currents:

$$
\begin{aligned}
& I_{4}=-1 \\
& 2=I_{4}-I_{3} \\
& \therefore I_{3}=I_{4}-1=-2 \\
& V_{x}=-I_{3}(1)=+2 \\
& V_{1}=-1\left(I_{1}\right) \\
& V_{2}=V_{1}-V_{x} \\
& V_{3}=V_{2}-I_{3}(2)
\end{aligned}
$$

$$
-1\left(I_{1}\right)
$$

$$
-V_{x}-1\left(I_{1}\right)+1\left(I_{y}\right)=0
$$

$$
I_{1}(2)=(-1)-2=\frac{-3}{2}
$$

$$
\begin{aligned}
& F_{1}(2)=(-1)-2=\frac{5}{2} \\
& \therefore V_{1}=+\frac{3}{2}
\end{aligned}
$$

$V_{2}=V_{1}-V_{x}=\frac{3}{2}-\frac{4}{2}=-\frac{1}{2}$ same as eq. $\operatorname{set}\left(V_{2}=-\frac{2}{4}=-\frac{1}{2}\right)$
¿I at $V_{3}:-I_{3}-1-1=0 \Rightarrow I_{3}=-2$

$$
\begin{aligned}
& \text { at } V_{3}:-I_{3}-1-1=0 \Rightarrow I_{3}=-2 \\
& V_{3}=V_{2}-I_{3}(2)=-\frac{1}{2}+\frac{8}{2}=\frac{7}{2} \text { same as eq. Set }\left(V_{3}=\frac{14}{4}=\frac{7}{2}\right)
\end{aligned}
$$

Alternative way: Create 1 pathway to ground \Rightarrow

$$
\begin{aligned}
& \text { Hernative way: create } \\
& R_{1}=1, \alpha=0, R_{3}=\infty, I_{s_{1}}=I_{s_{2}}=0, R_{2}=\infty, R_{4}=R_{5}=1 \\
&
\end{aligned}
$$

\therefore From eq. set: (1) $\left(V_{1}-V_{2}\right)=0 \Rightarrow V_{1}=V_{2}$

(2)

Since no source then $V_{1}=V_{2}=V_{3}$ because no I flow (open wire)

