Ex:

Find the Thevenin equivalent circuit at terminals abb. v_{x} must not appear in your solution. The expression must not contain more than circuit parameters $\alpha, R_{1}, R_{2}, R_{3}$, and $i_{\text {s }}$. Note: $0<\alpha<1$.

Sole:
(1) Find $V_{\text {th }}$: (Top node is $V_{\text {th }}$)

$$
+\frac{V_{t h}}{R_{1}+R_{2}}-I_{S}+\frac{V_{t h}-\alpha V_{x}}{R_{3}}
$$

$$
V_{x}=V_{t h}
$$

$$
\therefore \quad V_{\text {th }}\left(\frac{1}{R_{1}+R_{2}}+\frac{1}{R_{3}}-\frac{\alpha}{R_{3}}\right)=I_{S}
$$

$$
V_{\text {th }}=\frac{I_{s}\left(R_{3}\right)\left(R_{1}+R_{2}\right)}{R_{3}+\left(R_{1}+R_{2}\right)(1-\alpha)}
$$

(2) Find $R_{\text {th }}$:
no kthed using ISC

$$
\begin{aligned}
& V_{x}=0 \\
& I_{s c}=I_{s} \\
& \therefore R_{\text {th }}=\frac{V_{t h}}{I_{s c}}=\frac{R_{3}\left(R_{1}+R_{2}\right)}{R_{3}+\left(R_{1}+R_{2}\right)(1-\alpha)}
\end{aligned}
$$

