1. In (a)-(c), the voltage $v_{\mathrm{C}}(t)$ across a $0.2 \mu \mathrm{~F}$ capacitor is listed. Find the current, $i_{\mathrm{C}}(t)$, flowing in the capacitor in each case as a function of time:

a) $\quad v_{C}(t)=3 \mathrm{~V}$
b) $v_{C}(t)=1000 t \mathrm{~V} / \mathrm{s}$
c) $v_{C}(t)=1-e^{-t / 4 \mathrm{~ms}} \mathrm{~V}$
2. In (a)-(c), the current $i_{\mathrm{L}}(t)$ flowing into a 0.5 mH inductor is listed. Find the voltage, $v_{\mathrm{L}}(t)$, across the inductor in each case as a function of time:

a) $\quad i_{L}(t)=5 \mathrm{~mA}$
b) $\quad i_{L}(t)=5 t \mathrm{~mA} / \mathrm{s}$
c) $i_{L}(t)=5 \sin (2 \pi \cdot 100 t) \mathrm{mA}$
3. The following equation describes the voltage, v_{C}, across a capacitor as a function of time. Find the time, t, at which v_{C} is equal to 2 V .

$$
v_{C}(t)=1+3\left(1-e^{-t / 8 \mathrm{~ms}}\right) \mathrm{V}
$$

4. The following equation describes the voltage, v_{L}, across an inductor as a function of time. Find an expression for the current, $i_{\mathrm{L}}(t)$, through the inductor as a function of time. Assume that $i_{\mathrm{L}}(t=0)=0 \mathrm{~A}$.

$$
v_{L}(t)=2+6\left(1-e^{-t / 12.5 \mu \mathrm{~s}}\right) \mathrm{kV}
$$

5. Find the voltage, v_{C}, on the capacitor in the circuit below as a function of time if $v_{\mathrm{C}}(t=0)=2.4 \mathrm{~V}$.

