

Ex: The following equation describes the voltage, $v_{\rm C}$, across a capacitor as a function of time. Find the time, *t*, at which $v_{\rm C}$ is equal to 2 V.

 $v_C(t) = 1 + 3(1 - e^{-t/8 \text{ms}}) \text{ V}$

SOL'N: We begin by substituting for the value of $v_C(t)$ on the left side.

$$2 \text{ V} = 1 + 3(1 - e^{-t/8 \text{ms}}) \text{ V}$$

We move constant terms to the left side in order to isolate the exponential.

$$2 \text{ V} = 4 - 3e^{-t/8 \text{ ms}} \text{ V}$$

or

 $-2 \text{ V} = -3e^{-t/8 \text{ms}} \text{ V}$

or

 $\frac{2}{3} = e^{-t/8 \,\mathrm{ms}}$

or

$$\ln\frac{2}{3} = -t/8ms$$

Using $\ln(1/x) = -\ln(x)$ and multiplying both sides by 8ms isolates the *t*.

$$t = 8\text{ms} \cdot \ln\frac{3}{2} = 3.24 \text{ ms}$$