1. After being closed for a long time, the switch opens at \(t = 0 \).

Calculate the energy stored on the inductor as \(t \to \infty \).

2. Use the circuit in 1 above to write a numerical expression for \(v_o(t) \) for \(t > 0 \).

3. After being open for a long time, the switch closes at \(t = 0 \).

 a) Write an expression for \(V_c(t = 0^+) \)

 b) Write an expression for \(V_c(t > 0) \) using not more than \(R_1, R_2, V_s, I_s, \) and \(C \).
4. a) Calculate the value of R_L that would absorb maximum power.

b) Calculate that value of maximum power R_L could absorb.

5. Using superposition, derive an expression for V_1 that contains no circuit quantities other than i_s, V_S, R_1, R_2, R_3, and α, where $\alpha > 0$.