1.

For the circuit shown, write three independent equations for the node voltages V_{1}, V_{2}, and V_{3}. The quantity i_{x} must not appear in the equations.
2. Make a consistency check on your equations for Problem 1 by settings resistors and sources to values for which the values of V_{1}, V_{2}, and V_{3} are obvious. State the values of resistors, sources, and for your consistency check, and show that your equations for Problem 1 are satisfied for these values. (In other words, plug in the values into your equations for Problem 1 and show that the left side and the right side of each equation are equal.)
3.

For the circuit shown, write three independent equations for the three mesh currents i_{1}, i_{2}, and i_{3}. The quantity v_{x} must not appear in the equations.
4.

Find the Thevenin equivalent circuit at terminals a-b. i_{x} must not appear in your solution.
Note: $0<\alpha<1$.
5.

Calculate the power consumed (ie dissipated) by the 18 V source. Note: If a source supplies power, the power it consumes is negative.

