1.

After being open for a long time, the switch closes at $\mathrm{t}=0$.
a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.
b) Write a numerical expression for $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.
2.

After being open for a long time, the switch becomes closed at $\mathrm{t}=0$.
a) Write an expression for $\mathrm{V}_{\mathrm{c}}\left(\mathrm{t}=0^{+}\right)$.
b) Write an expression for $\mathrm{V}_{\mathrm{c}}(\mathrm{t}>0)$ in terms of $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3, \mathrm{Vs}$, and C .
3.

a) Calculate the value of RL that would absorb maximum power.
b) Calculate that value of maximum power RL could absorb.
4.

Using superposition, derive an expression for \boldsymbol{i} that contains no circuit quantities other than Is, Vs, R1, R2, R3, and α, where $\alpha>0$.

