UNIVERSITY OF UTAH
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT
ACE 1270
HOMEWORK \#6 Solution
Summer 2007
1.

After being open for a long time, the switch closes at $\mathrm{t}=0$.
a) Calculate the energy stored on the inductor as $t \rightarrow \infty$.
b) Write a numerical expression for $\mathrm{i}(\mathrm{t})$ for $\mathrm{t}>0$.
sol'n:
a)

the L
acts like a wire.

Since the $2.4 \mathrm{k} \Omega$ is shorted out by wires, we may ignore it. This leaves a current divider formed by the $1 k \Omega$ and 200Ω resistors for current from the 45 mA source.

$$
\begin{aligned}
& i_{L}=45 \mathrm{~mA} \cdot \frac{200 \Omega}{200 \Omega+1 \mathrm{k} \Omega}=45 \mathrm{~mA} \cdot \frac{1}{6} \\
& i_{2}=7.5 \mathrm{~mA}
\end{aligned}
$$

For an inductor, $w_{L}=\frac{1}{2} L i_{L}{ }^{2}$:

$$
\begin{aligned}
w_{L}(t \rightarrow \infty) & =\frac{1}{2} \cdot 200 \mu H \cdot(7.5 \mathrm{~mA})^{2} \\
& =100 \mu \mathrm{H} \cdot\left(\frac{3}{4}\right)^{2}(10 \mathrm{~mA})^{2} \\
& =\frac{9}{16} \cdot 100 \mu \cdot 100 \mu \mathrm{~J} \\
& =\frac{9}{16} \cdot 10 \mathrm{k} \mu \mu \mathrm{~J} \\
& =\frac{90}{16} \mathrm{~nJ} \\
w_{L}(t \rightarrow \infty) & =5.625 \mathrm{~nJ}
\end{aligned}
$$

b)
$t=0^{-}$model: L-wire, switch open
$2.4 \mathrm{k} \Omega$ shorted out (so ignore) find $i_{2}\left(0^{-}\right)$

$$
t=0^{+} \text {model: } L=\text { current source: } i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)
$$

We have a current divider:

$$
i\left(0^{+}\right)=45 \mathrm{~mA} \cdot \frac{200 \Omega}{1 k \Omega+2.4 k \Omega+200 \Omega}=\frac{45 \mathrm{~mA}}{12}
$$

or $i\left(0^{+}\right)=\frac{15}{4} \mathrm{~mA}$
From part (a) we know $i(t \rightarrow \infty)=0$
since the 2.4 kr is shorted by the L and the wire on the middle right side.
$\tau=\frac{L}{R_{T h}}$ where $K_{T h}=$ Theremin R for terminals where L
 is conned led.

We turn off the independent source and look into the terminals where L is connected.

$$
\begin{aligned}
R_{T h} & =2.4 \mathrm{k} \Omega \|(1 \mathrm{k} \Omega+200 \Omega) \\
& -2.4 \mathrm{k} \Omega \| 1.2 \mathrm{k} \Omega \\
& =1.2 \mathrm{k} \Omega \cdot \quad 2 \| 1=1.3 \mathrm{k} \Omega \cdot \frac{2}{3} \\
R_{T h} & =800 \Omega \quad \tau=\frac{200 \mu H}{}=\frac{1}{4} \mu \mathrm{~s}
\end{aligned}
$$

or $\tau=250 n s$
Use $i(t)=i(t \rightarrow \infty)+\left[i\left(0^{t}\right)-i(t \rightarrow \infty)\right] e^{-t / \tau} \quad t>0$

$$
\begin{aligned}
\therefore i(t)=0+\left[\frac{15}{4} \mathrm{~mA}-0\right] e^{-t / 250 n s} & =3.75 \mathrm{mAe} \\
& \text { for } t>0
\end{aligned}
$$

2.

After being open for a long time, the switch becomes closed at $\mathrm{t}=0$.
a) Write an expression for $\mathrm{V}_{\mathrm{c}}\left(\mathrm{t}=0^{+}\right)$.
b) Write an expression for $\mathrm{V}_{\mathrm{c}}(\mathrm{t}>0)$ in terms of $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$, Vs , and C . sol 1_{n}^{\prime} : a) we use $v_{c}\left(t=0^{+}\right)=v_{c}\left(0^{-}\right)$.

$$
t=0^{-} \text {model: } C \text { acts like open circuit }
$$

switch is open

No current flows. $\quad v_{c}\left(0^{+}\right)=V_{C}\left(U^{-}\right)=-v_{S}$
b) We use the general form of sol'n:

$$
v_{c}(t>0)=v_{c}(t \rightarrow \infty)+\left[v_{c}\left(0^{+}\right)-v_{c}(t \rightarrow \infty)\right] e^{-t / \tau}
$$

where $\tau=R_{\text {Th }} C$ (using Thevenin equiv where $\&$ connected)
$t \rightarrow \infty$ model: $\quad c=o p e n$, switch closed

Since there is no v-drop across R_{3}, we have $v_{c}(t \rightarrow \infty)=-v$-drop across R_{1} from v-loop around outside of circuit.

$$
\begin{aligned}
& v \text {-drop ares } R_{1}=v_{3} \frac{R_{1}}{R_{1}+R_{2}} \quad \text { (v-divider) } \\
& \therefore v_{c}(t \rightarrow \infty)=-v_{S} \frac{R_{1}}{R_{1}+R_{2}}
\end{aligned}
$$

$\tau=R_{T h} C$: We remove C and turn off v_{S}. Then we look into circuit from terminals where C connected.

We have $R_{T h}=R_{1} \| R_{2} \quad 1 \quad R_{3}$
Combining results, we have our solution:

$$
v_{c}(t>0)=-v_{s} \frac{R_{1}}{R_{1}+R_{2}}+\left[-v_{s}+v_{s} \frac{R_{1}}{R_{1}+R_{2}}\right] e^{-t /\left(R_{1} \| R_{2}+R_{3}\right) c}
$$

or

$$
v_{c}(t>0)=-v_{5}\left\{\frac{R_{1}}{R_{1}+R_{2}}+\frac{R_{2}}{R_{1}+R_{2}} e^{-t /\left(R_{1} \| R_{2}+R_{3}\right) c}\right\}
$$

or

$$
v_{c}(t>0)=-v_{s}+v_{s} \frac{R_{2}}{R_{1}!R_{2}}\left[1-e^{-t /\left(R_{1} \| R_{2}+R_{3}\right) c}\right]
$$

3.

a) Calculate the value of RL that would absorb maximum power.
b) Calculate that value of maximum power RL could absorb.
sol'n: $\quad R_{L}=R_{T h}$ for max power transfer where the Thevenin equivalent is with respect to terminals a and b (without R_{L}).

We observe that the $2 k \Omega$ resistor on lop is shorted ul by wires and may be ignored.

We also observe that the $1.2 \mathrm{k} \Omega$ resistor on top is directly across the loN source and may be treated as a separate circuit having no effect on the rest of the circuit other than to draw some current from the 10 V source.

That leaves us with the following circuit:

$V_{T h}=$ voltage across a, b terminals with no load from a to b.

We have $v_{a b}=20 \mathrm{~mA}-1.8 \mathrm{k} \Omega+10 \mathrm{~V}=4.6 \mathrm{~V}$

To find $R_{T h}$, we turn off the two independent sources and look into the circuit from the a and b terminals:

We sec $1.8 \mathrm{k} \Omega$ across a and b.

$$
R_{T h}=1.8 \mathrm{k} \Omega
$$

$$
\therefore R_{L}=1.8 \mathrm{k} \Omega
$$

b) max pour $=\frac{v_{T h}^{2}}{4 R_{T h}}=\frac{(46 \mathrm{~V})^{2}}{4 \cdot 1.8 \mathrm{k} \Omega}=293.9 \mathrm{~mW}$
4.

Using superposition, derive an expression for \boldsymbol{i} that contains no circuit quantities other than Is, Vs, R1, R2, R3, and α, where $\alpha>0$.

```
sol'n: We turn on one independent source at
    a time, find i for each source, and
    sum the i's.
```

 case I: \(v_{s}\) on and \(i_{s}\) off (\(=\) open)

We have $i_{1}=\alpha v_{x 1}=\frac{v_{x 1}}{R_{3}}$ Unless $\alpha=\frac{1}{R_{3}}$ exactly, (which is impossible
in practice), we must have $v_{x}=0, i_{1}=0$.
else II: V_{s} off, $i_{\vec{p}}$ on
(=wire)

We have the following current summation at the node on the right side:

$$
-i_{5}-\alpha i_{2} R_{2}+i_{2}=0
$$

or

$$
i_{2}\left(1-\alpha R_{2}\right)=i_{s}
$$

or

$$
i_{2}=\frac{i_{5}}{1-\alpha R_{2}}
$$

Now we sum the i_{1} and i_{2} :

$$
\begin{gathered}
i=i_{1}+i_{2}=0+\frac{i_{s}}{1-\alpha R_{2}} \\
i=\frac{i_{s}}{1-\alpha R_{2}}
\end{gathered}
$$

