UNIVERSITY OF UTAH

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT
ECE 1270
HOMEWORK \#8
Summer 2007

1. Give numerical answers to each of the following questions:
a) Rationalize $\frac{-80-\mathrm{j} 60}{28-\mathrm{j} 96}$. Express your answer in rectangular form.
b) Find the polar form of $(1+j)^{*}\left(\sqrt{1+\frac{\sqrt{3}}{2}}-j \sqrt{1-\frac{\sqrt{3}}{2}}\right)^{*}$. (Note: the asterisk means "conjugate".)
c) Find the following phasor: $\mathrm{P}\left|3 \sin \left(25 \mathrm{kt}-120^{\circ}\right)\right|$.
d) Find the magnitude of $\frac{(1-j 7) e^{-j 10^{\circ}}}{1-e^{j 90^{\circ}}}$.
e) Find the imaginary part of $\frac{1+j \sqrt{3}}{e^{-j 30^{\circ}}}$.
2.

a) Choose an R, an L, or a C to be placed in the dashed-line box to make

$$
\mathrm{i}(\mathrm{t})=\mathrm{I}_{\mathrm{o}} \cos \left(25 \mathrm{kt}+135^{\circ}\right)
$$

where I_{0} is a positive, (i.e., nonzero), real constant. State the value of the component you choose. Hint: Use a Thevenin equivalent.
3. With your component from problem 2 in the circuit, calculate the resulting value of I_{o}.
4.

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $\mathrm{i}_{\mathrm{s}}(\mathrm{t})$, and show numerical impedance values for R, L, and C . Label the dependent source appropriately.
b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for \mathbf{V}_{Th} and the numerical impedance value of z_{Th}.

