1. 



Rail voltages $= \pm 9 \mathrm{~V}$
a) The above circuit operates in linear mode. Derive a symbolic expression for $\mathrm{V}_{\mathrm{o}}$. The expression must contain not more than the parameters $\mathrm{V}_{\mathrm{s} 1}, \mathrm{~V}_{\mathrm{s} 2}, \mathrm{R}_{1}, \mathrm{R}_{2}$, and $\mathrm{R}_{3}$.
2. a) If $\mathrm{V}_{\mathrm{s} 2}=0 \mathrm{~V}$, find the value of $\mathrm{R}_{2}$ that will yield an output voltage of $\mathrm{V}_{\mathrm{o}}=-1 \mathrm{~V}$ when $\mathrm{V}_{\mathrm{s} 1}=10 \mathrm{mV}$.
b) Derive a symbolic expression for Vo in terms of common mode and differential input voltages:

$$
v_{\Sigma}=\frac{V_{s 1}+V_{s 2}}{2} \text { and } v_{\Delta}=\frac{V_{s 1}-V_{s 2}}{2}
$$

The expression must contain not more than the parameters $\mathrm{V}_{2}, v_{\Delta}, \mathrm{R}_{1}, \mathrm{R}_{2}$, and $\mathrm{R}_{3}$. Write the expression as $v_{\Sigma}$ times a gain term plus $v_{\Delta}$ times a gain term. Hint: write $\mathrm{V}_{\mathrm{s} 1}$ ande $\mathrm{V}_{\mathrm{s} 2}$ in terms of $v_{\Sigma}$ and $v_{\Delta}$.
c) Using the value of $\mathrm{R}_{2}$ from part (a), calculate the input resistance, $\mathrm{R}_{\mathrm{in}}=\mathrm{V}_{\mathrm{s} 2} / \mathrm{i}_{\mathrm{s} 2}$, seen by the $\mathrm{V}_{\mathrm{s} 2}$ source.


Rail voltages $= \pm 9 \mathrm{~V}$

After being open for a long time, the switch closes at time $t=t_{0}$.

a) Choose either an L or a C to go in box a to produce the $v_{o}(t)$ shown above. Specify what component goes in the box and its value.
b) Sketch $\mathrm{V}_{1}(\mathrm{t})$, showing numerical values appropriately.
4. a) Sketch $\mathrm{V}_{2}(\mathrm{t})$, showing numerical values appropriately.
b) Sketch $\mathrm{V}_{3}(\mathrm{t})$. Show numerical values for $\mathrm{t}<\mathrm{t}_{\mathrm{t}}$, for $\mathrm{t}_{\mathrm{o}}<\mathrm{t}<\left(\mathrm{t}_{\mathrm{o}}+1.92 \mathrm{~ms}\right)$, and for $\mathrm{t}>\left(\mathrm{t}_{\mathrm{o}}+1.92 \mathrm{~ms}\right)$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.
5.

a) Find the Thevenin equivalent of the above circuit relative to terminals $\mathbf{a}$ and $\mathbf{b}$.
b) If we attach $R_{L}$ to terminals $\mathbf{a}$ and $\mathbf{b}$, find the value of $R_{L}$ that will absorb maximum power.
c) Calculate the value of that maximum power absorbed by $R_{\mathrm{L}}$.
6.

a) A frequency-domain circuit is shown above. Write the value of phasor current $\mathbf{I}_{\mathbf{1}}$ in rectangular form.
b) Given $\omega=20 \mathrm{krad} / \mathrm{sec}$., write a numerical time-domain expression for $\mathrm{i}_{1}(\mathrm{t})$, the inverse phasor of $\mathbf{I}_{1}$.

