UNIVERSITY OF UTAH ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

HOMEWORK #9 and #10

Summer 2007

Rail voltages = $\pm 9V$

a) The above circuit operates in linear mode. Derive a symbolic expression for V_o . The expression must contain not more than the parameters V_{s1} , V_{s2} , R_1 , R_2 , and R_3 .

2. a) If $V_{s2} = 0V$, find the value of R_2 that will yield an output voltage of V_0 =-1V when V_{s1} =10mV.

b) Derive a symbolic expression for Vo in terms of common mode and differential input voltages:

$$v_{\Sigma} = \frac{V_{s1} + V_{s2}}{2}$$
 and $v_{\Delta} = \frac{V_{s1} - V_{s2}}{2}$

The expression must contain not more than the parameters V₂, v_{Δ} , R₁, R₂, and R₃. Write the expression as v_{Σ} times a gain term plus v_{Δ} times a gain term. Hint: write V_{s1} and V_{s2} in terms of v_{Σ} and v_{Δ} .

c) Using the value of R_2 from part (a), calculate the input resistance, $R_{in}{=}V_{s2}/i_{s2},$ seen by the V_{s2} source.

Rail voltages = $\pm 9V$

After being open for a long time, the switch closes at time $t = t_0$.

a) Choose either an L or a C to go in box a to produce the $v_o(t)$ shown above. Specify what component goes in the box and its value.

b) Sketch $V_1(t)$, showing numerical values appropriately.

4. a) Sketch $V_2(t)$, showing numerical values appropriately.

b) Sketch V₃(t). Show numerical values for $t < t_o$, for $t_o < t < (t_o +1.92ms)$, and for $t > (t_o +1.92ms)$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

- a) Find the Thevenin equivalent of the above circuit relative to terminals **a** and **b**.
- b) If we attach R_L to terminals **a** and **b**, find the value of R_L that will absorb maximum power.
- c) Calculate the value of that maximum power absorbed by R_L.
- 6.

a) A frequency-domain circuit is shown above. Write the value of phasor current I_1 in rectangular form.

b) Given ω =20k rad/sec., write a numerical time-domain expression for $i_1(t)$, the inverse phasor of I_1 .