

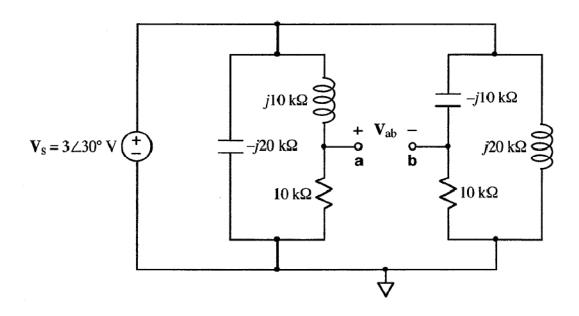
1

Rail voltages = $\pm 10 \text{ V}$

After being open for a long time, the switch closes at time $t = t_0$.

Choose either an R or C to go in box \mathbf{a} and either an R or L to go in box \mathbf{b} to produce the $v_0(t)$ shown above. Use an R value of 3 k Ω . Also, note that v_0 stays high forever after $t_0 + 20 \,\mu s$. Specify which element goes in each box and its value.

- Sketch $v_1(t)$, showing numerical values appropriately.
- Sketch $v_2(t)$, showing numerical values appropriately.


b)

Sketch $v_3(t)$. Show numerical values for $t < t_0$, for $t_0 < t < t_0 + 20 \,\mu\text{s}$, and for $t > t_0 + 20 \,\mu\text{s}$. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

Summer 2009 1

4

A frequency-domain circuit is shown above. Write the value of phasor voltage \mathbf{V}_{ab} in polar form.

5. Given $\omega = 500 \text{k rad/s}$, write a numerical time-domain expression for $v_{ab}(t)$, the inverse phasor of V_{ab} .

Summer 2009 2