1.

Calculate i_{1}.
2.

Calculate v_{1}.
3. Find the value of total resistance between terminals \mathbf{a} and \mathbf{b}.

4.

Derive an expression for i_{1}. The expression must not contain more than the circuit parameters $i_{\mathrm{s}}, v_{\mathrm{s}}, R_{1}, R_{2}$, and R_{3}.
5. From Problem \#4, make at least one consistency check (other than units check) on your expression. In other words, choose component values that make the circuit easy to solve just by looking at the new circuit. After solving this new circuit with the chosen component values, go back to the derived equations from Problem \#4 and plug in those chosen component values and compare these equations to the newly solved circuit with those same component values.
6.

Derive an expression for v_{2}. The expression must not contain more than the circuit parametcrs $\alpha, i_{\mathrm{a}}, R_{1}$, and R_{2}. Note: $\alpha<0$.
7. From Problem \#6, make at least one consistency check (other than units check) on your expression. In other words, choose component values that make the circuit easy to solve just by looking at the new circuit. After solving this new circuit with the chosen component values, go back to the derived equations from Problem \#6 and plug in those chosen component values and compare these equations to the newly solved circuit with those same component values.
8. Derive an expression for i_{1}. The expression must contain no other parameters than $V_{a}, i_{a}, R_{1}, R_{2}$, and/or R_{3}.

9.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_{0} in terms of not more than $i_{\mathrm{s}}, R_{1}, R_{2}$, and R_{3}.
10.

The op-amp operates in the linear mode. Using an appropriate model of the op-amp, derive an expression for v_{o} in terms of not more than v_{s}, i_{s}, R_{1}, and R_{2}.

