

1. Use the mesh-current method to find i_1 and i_2 , and i_3 .

- 2. a. Use the mesh-current method to find $\,V_{_{X}}\,$, $\,V_{_{X}}\,$ must not be in equation.
 - b. Find power dissipated by the dependent source.

3. Find the Thevenin equivalent circuit at terminals a-b.

Homework #4

4. Find the Thevenin equivalent circuit at terminals a-b.

5. Determine the power in the dependent source if $R_{\rm L}$ =2k Ω

6. For the circuit shown, write three independent equations for the node voltages v_1 , v_2 , and v_3 . The quantity i_x must not appear in the equations.

7. Make a consistency check on your equations for Problem 1 by setting resistors and sources to values for which the values of v_1 , v_2 , and v_3 are obvious. State the values of resistors, sources, and noe voltages for your consistency check, and show that your equations for Problem 1 are satisfied for these values. (In other words, plug the values into your equations for Problem 1 and show that the left side and the right side of each equations are equal.)

- 8. For the circuit shown, write three independent equations for the three mesh currents, i_1 , i_2 , and
 - $i_3\,.\,$ The quantity $\,v_{_X}\,$ must not appear in the equations.

9. Find the Thevenin equivalent circuit at terminals a and b. The quantity i_x must not appear in your solution. Note: $\alpha > 0$.

10. Calculate the power consumed (i.e. dissipated) by the $i_x/2$ dependent source. Note: If a source supplies power, the power it consumes is negative.

