1. Use the mesh-current method to find i_{1} and i_{2}, and i_{3}.

2. a. Use the mesh-current method to find $\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{x}}$ must not be in equation.
b. Find power dissipated by the dependent source.

3. Find the Thevenin equivalent circuit at terminals $a-b$.

4. Find the Thevenin equivalent circuit at terminals a-b.

5. Determine the power in the dependent source if $R_{L}=2 k \Omega$

6. For the circuit shown, write three independent equations for the node voltages v_{1}, v_{2}, and v_{3}. The quantity i_{X} must not appear in the equations.

7. Make a consistency check on your equations for Problem 1 by setting resistors and sources to values for which the values of $\mathrm{v}_{1}, \mathrm{v}_{2}$, and v_{3} are obvious. State the values of resistors, sources, and noe voltages for your consistency check, and show that your equations for Problem 1 are satisfied for these values. (In other words, plug the values into your equations for Problem 1 and show that the left side and the right side of each equations are equal.)
8. For the circuit shown, write three independent equations for the three mesh currents, i_{1}, i_{2}, and i_{3}. The quantity v_{x} must not appear in the equations.

9. Find the Thevenin equivalent circuit at terminals a and b. The quantity i_{x} must not appear in your solution. Note: $\alpha>0$.

10. Calculate the power consumed (i.e. dissipated) by the $\mathrm{i}_{\mathrm{x}} / 2$ dependent source. Note: If a source supplies power, the power it consumes is negative.

